The traveling salesman problem with few inner points

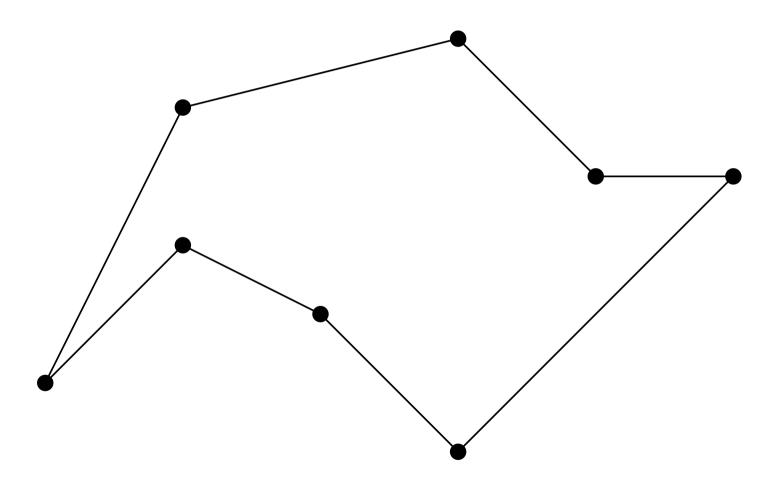
Michael Hoffmann & Yoshio Okamoto* ETH Zurich URAW 2004

* Supported by the Berlin-Zürich Joint Graduate Program

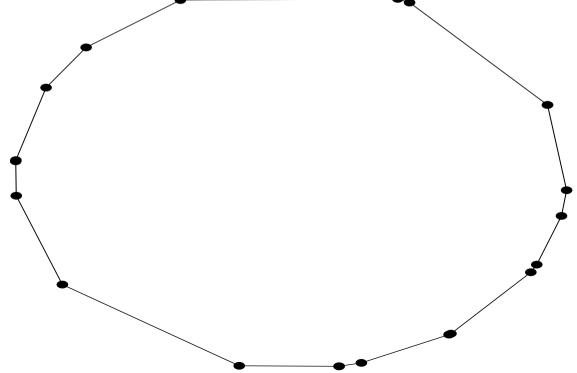
Given: finite set of points on \mathbb{R}^2 Find: a minimum-length tour

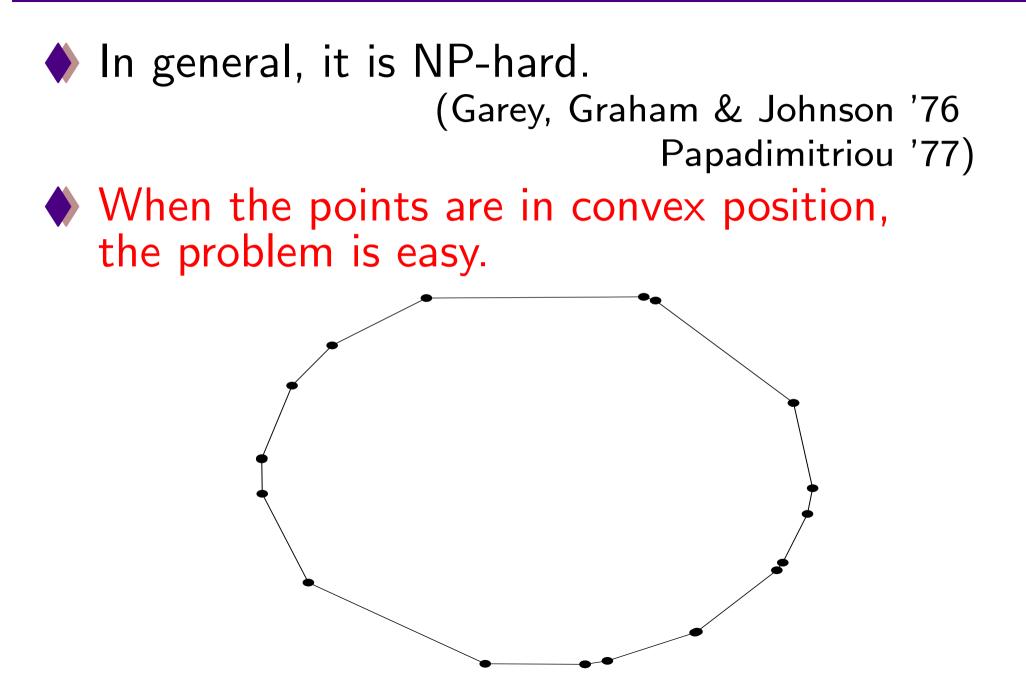
The 2DTSP

Given: finite set of points on ${\rm I\!R}^2$ Find: a minimum-length tour



 In general, it is NP-hard. (Garey, Graham & Johnson '76 Papadimitriou '77)
 When the points are in convex position, the problem is easy.

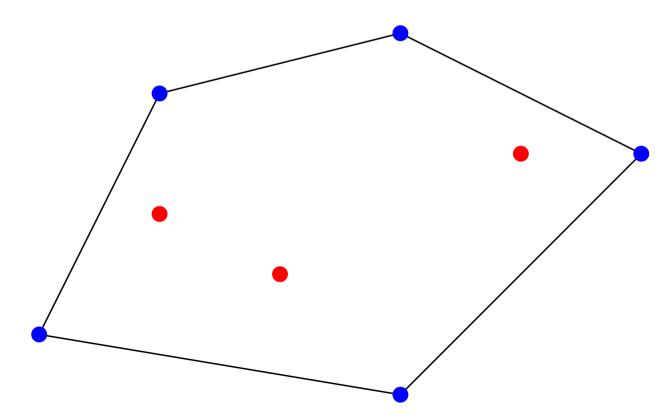




Observation

3

The **inner points** make the problem difficult.



Observation

The **inner points** make the problem difficult.

Motivation

How many inner points can we have in order to obtain a polynomial-time algorithm?

We give two simple algorithms.

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- ♦ Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.

We give two simple algorithms.

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- ♦ Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.

We give two simple algorithms.

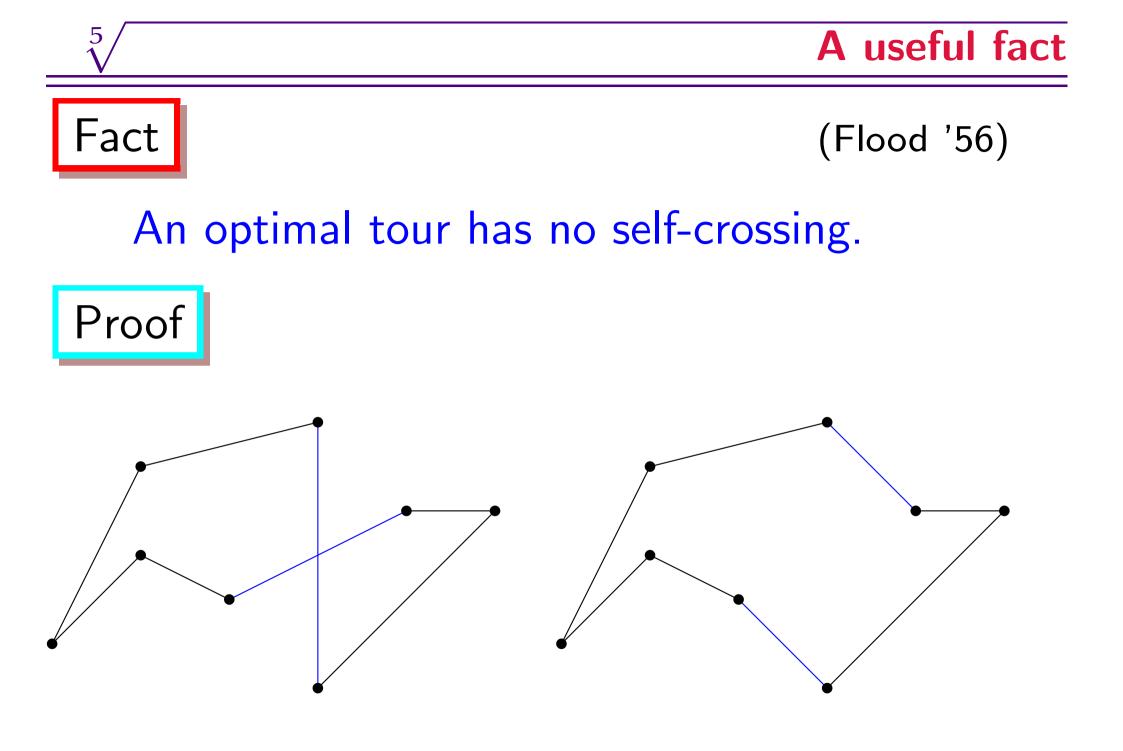
- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.

We give two simple algorithms.

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- ♦ Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.

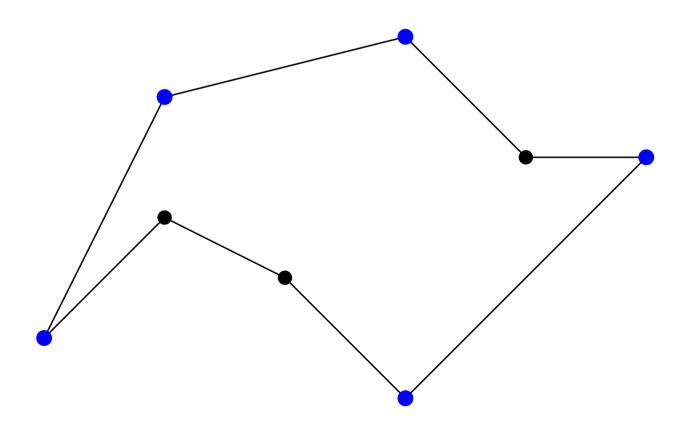
We give two simple algorithms.

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- ♦ Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.



Corollary

An optimal tour visits the non-inner points in a cyclic order.



Corollary

An optimal tour visits the non-inner points in a cyclic order.

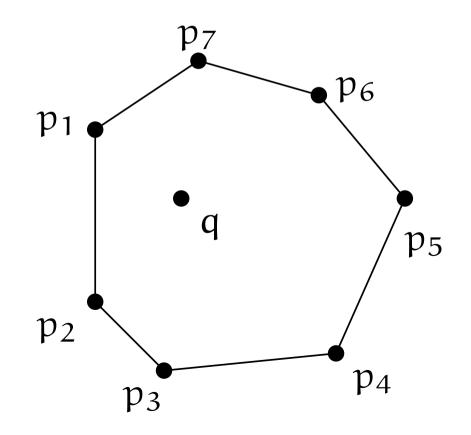
Proof

Suppose not. Then ∃ a "skip." Skipped points must be visited later, which causes a selfcrossing. A contradiction.

One inner point

Consider the case k = 1. (k := # of inner pts)

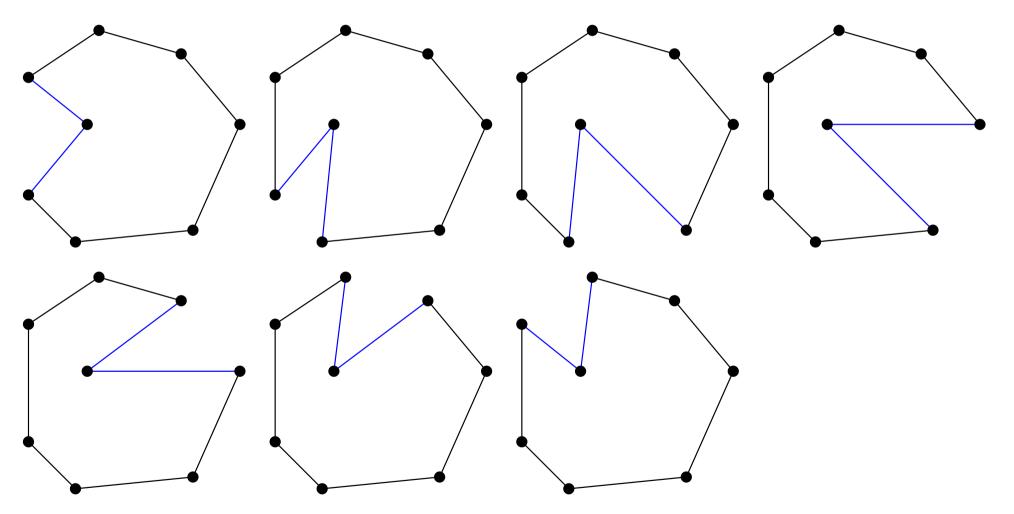
Inner point: qNon-inner points: p_1, p_2, \dots, p_{n-1} labeled according to a cyclic order



8

One inner point

of tours which "respect" the cycl. order = n-1.



Choose the best one.

- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order

- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order

(i) Compute the length of the tour;

- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order

- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order
 - (i) Compute the length of the tour;
- (4) Choose the best one among them.

- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order

- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order

There are k inner points.

- # of tours which "respect" the cycl. order = $O(k!n^k)$.
- They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.

The running time =
$$O(n \log n) + O(k!n^{k+1})$$
.

convex hull computation

There are k inner points.

- They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.

The running time =
$$O(n \log n) + O(k!n^{k+1})$$
.

convex hull computation

10

Running time

There are k inner points.

- # of tours which "respect" the cycl. order $= O(k!n^k)$.
- They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.

The running time =
$$O(n \log n) + O(k!n^{k+1})$$
.

convex hull computation

There are k inner points.

- # of tours which "respect" the cycl. order = $O(k!n^k)$.
- They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.

The running time =
$$O(n \log n) + O(k!n^{k+1})$$
.

convex hull computation

There are k inner points.

- # of tours which "respect" the cycl. order $= O(k!n^k)$.
- They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.

The running time = $O(n \log n) + O(k!n^{k+1})$.

convex hull computation

There are k inner points.

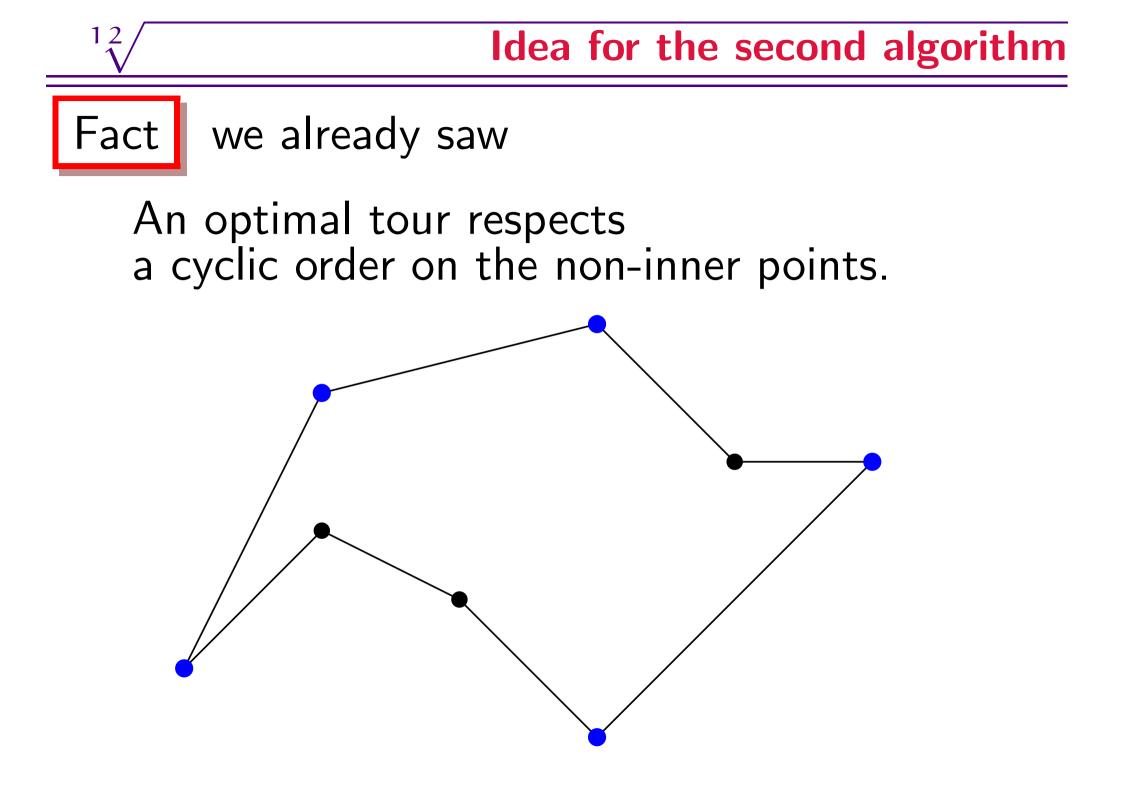
- # of tours which "respect" the cycl. order = $O(k!n^k)$.
- They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.

The running time =
$$O(n \log n) + O(k!n^{k+1})$$
.

convex hull computation

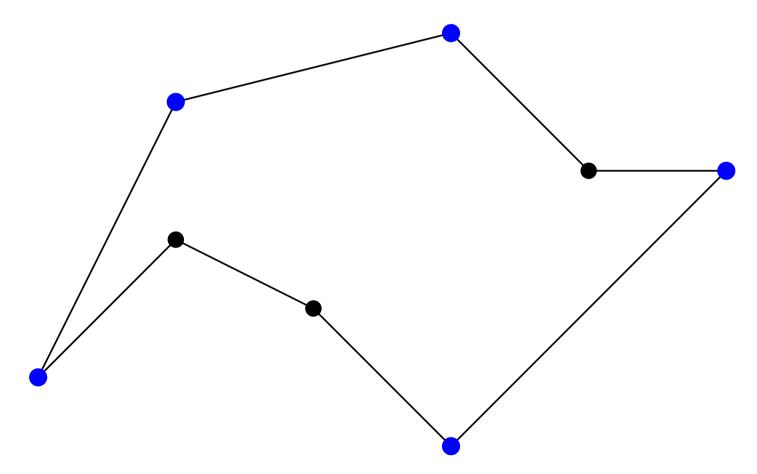
We give two simple algorithms.

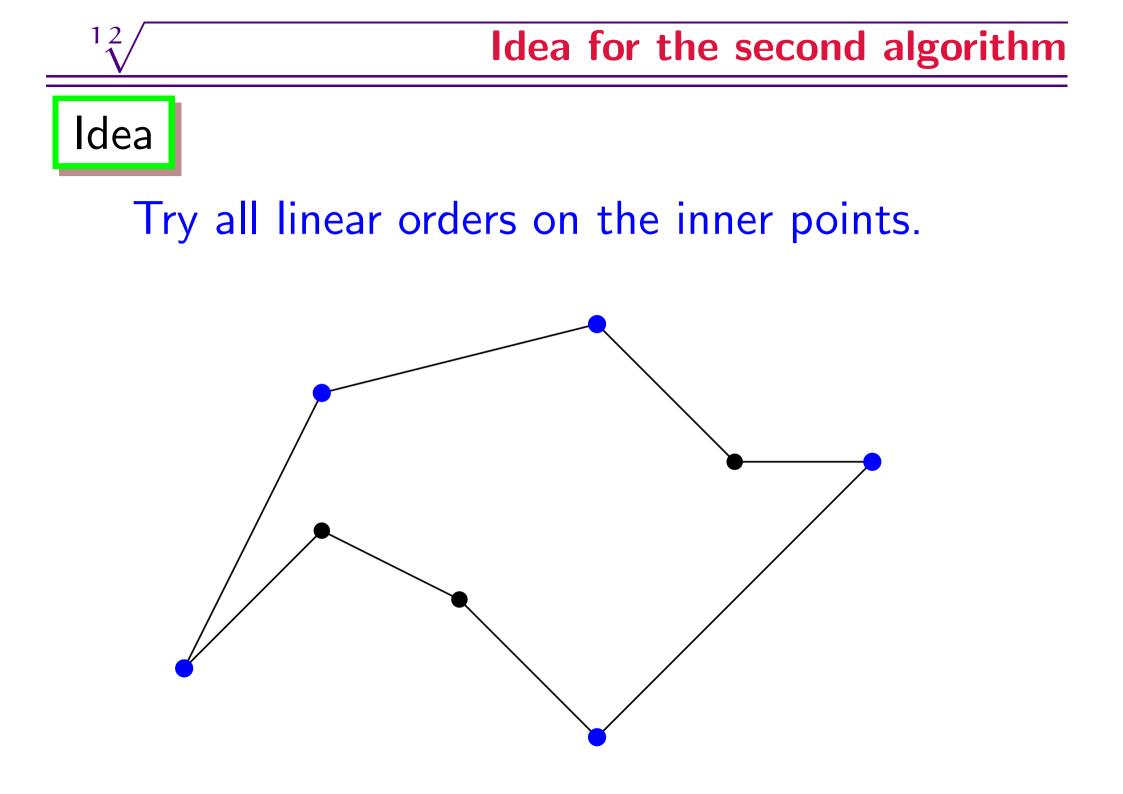
- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- ♦ Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.



Another fact

An optimal tour respects some linear order on the inner points.





13

- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (i) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

13

- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (i) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

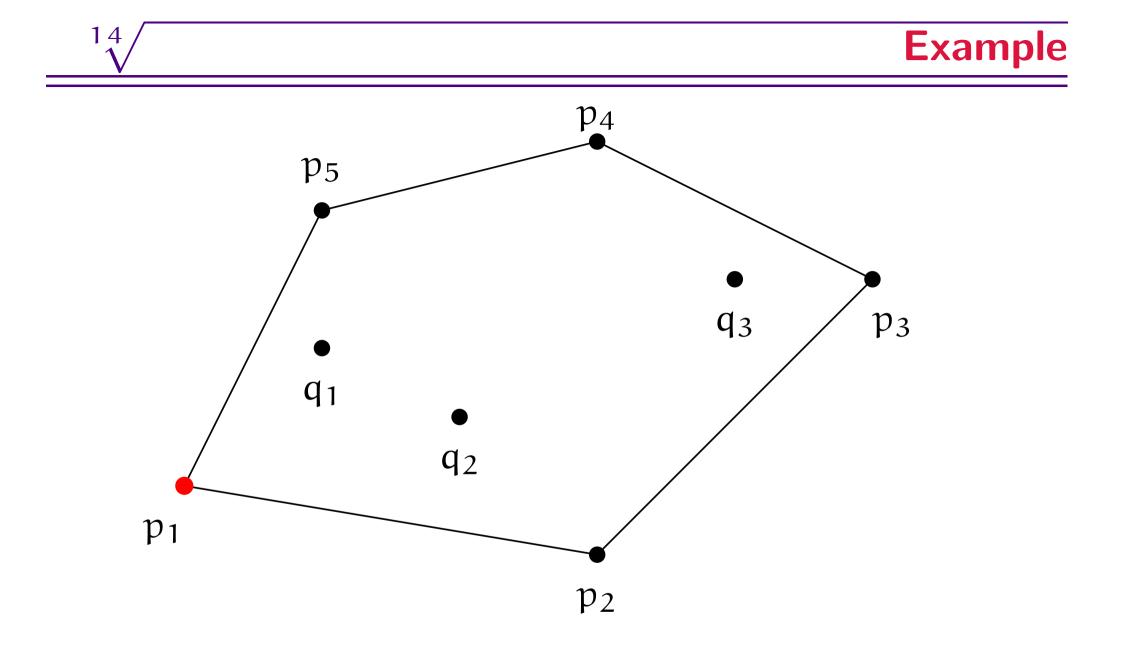
13

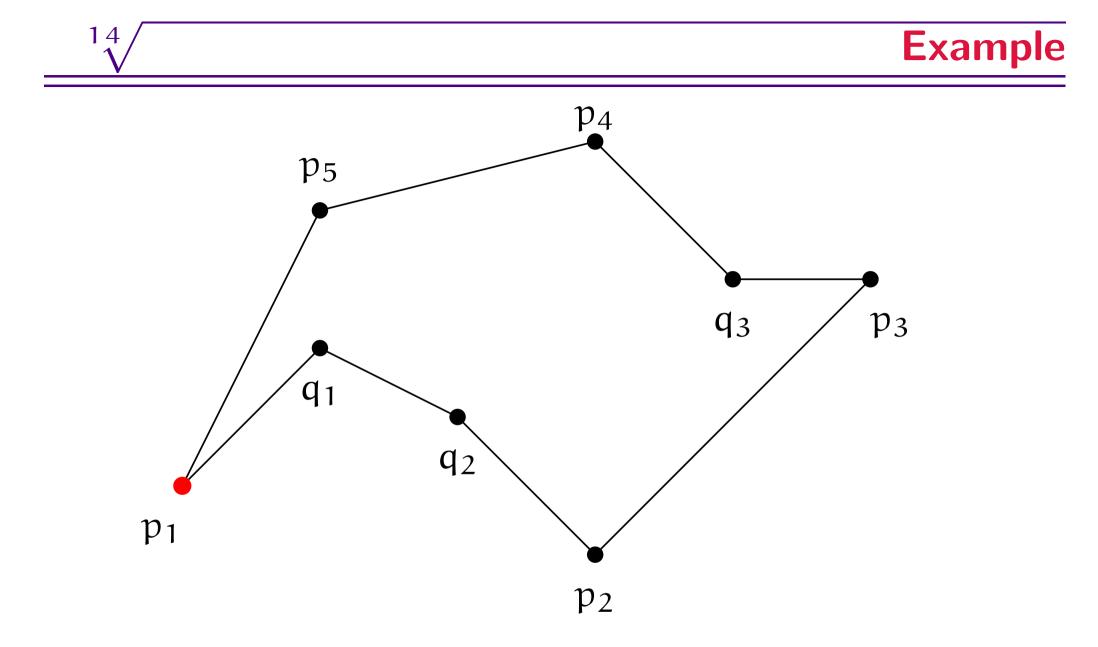
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (i) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (i) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

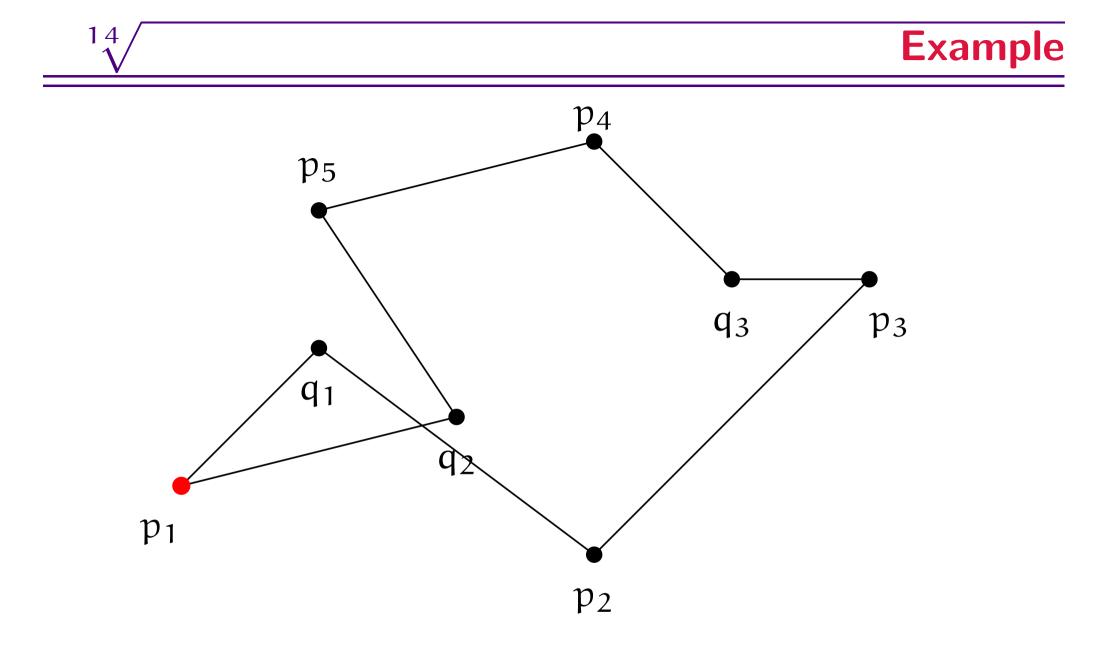
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (i) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (i) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

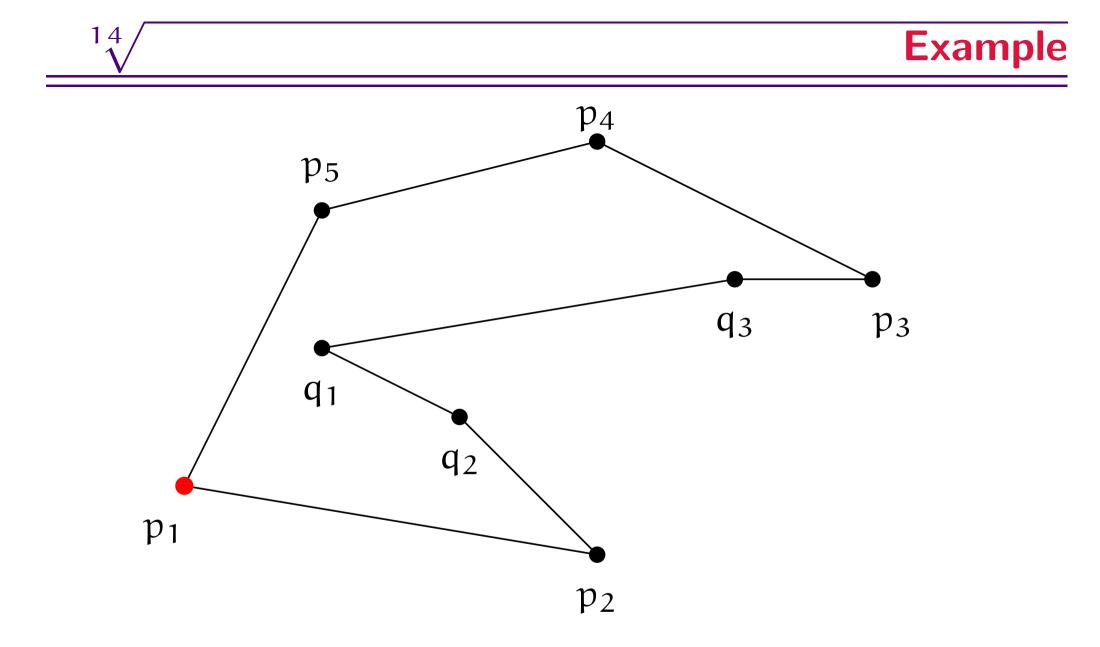




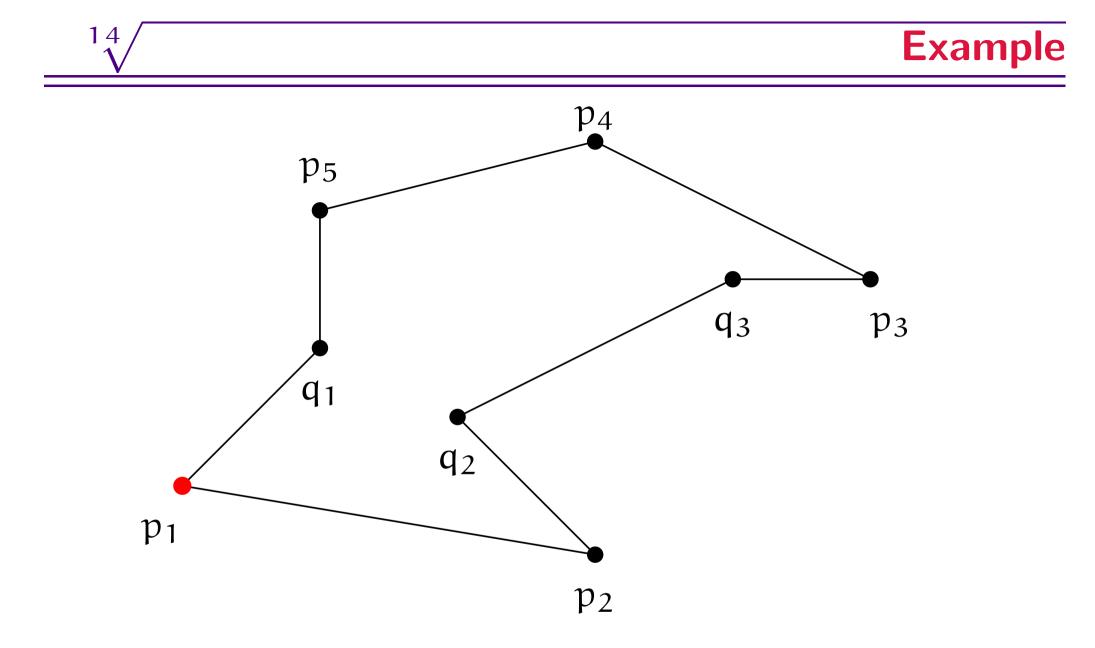
Optimal tour among those which respect the cyclic order and the order "1-2-3."



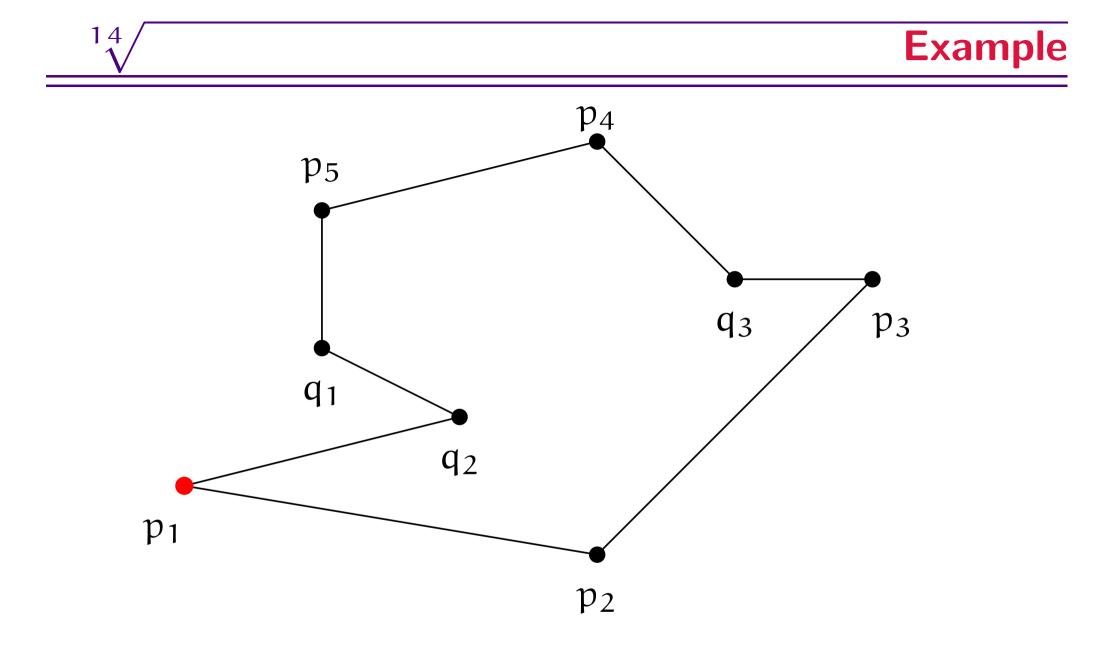
Optimal tour among those which respect the cyclic order and the order "1-3-2."



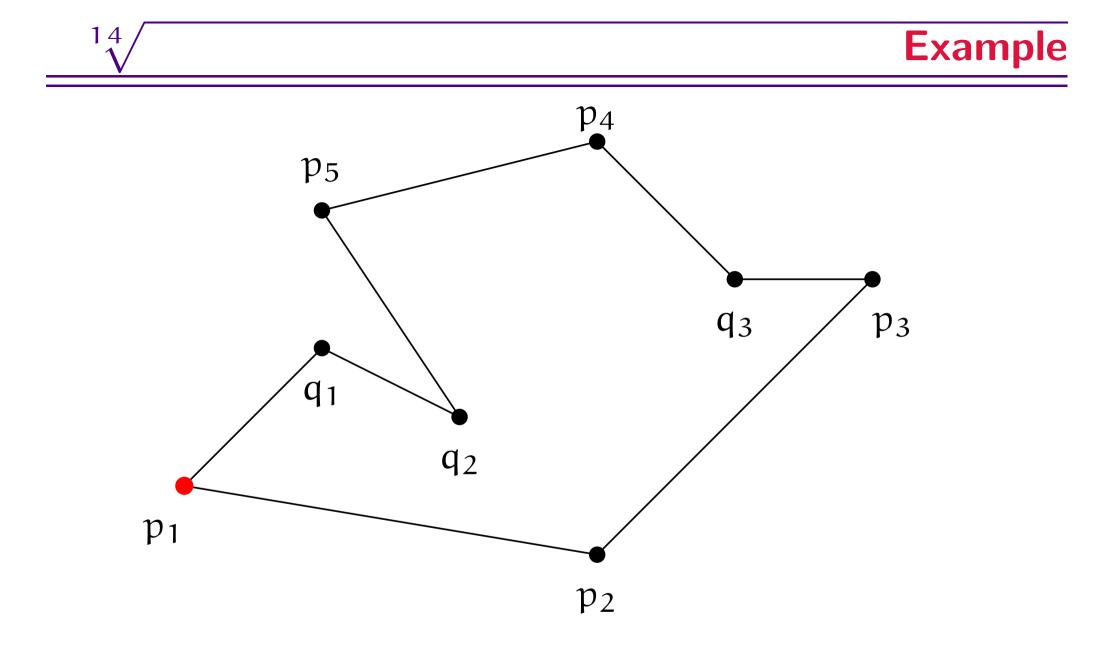
Optimal tour among those which respect the cyclic order and the order "2-1-3."



Optimal tour among those which respect the cyclic order and the order "2-3-1."



Optimal tour among those which respect the cyclic order and the order "3-1-2."



Optimal tour among those which respect the cyclic order and the order "3-2-1."

Choose the best one



- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (i) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.
- Not yet clear: How to do Step (3i)??

17/

Dynamic programming

a cycl. order on the non-inner pts p_1,\ldots,p_{n-k} a linear order on the inner pts q_1,\ldots,q_k F(i, j) := the length of a shortest path from p_1 to p_i via p_1, \ldots, p_i and q_1, \ldots, q_j which respects these two orders **q**₁ **q**₂ p_1 \mathfrak{p}_5 p_2 p_3 \mathfrak{p}_4 (i = 5, j = 2)

 $\frac{18}{\sqrt{}}$

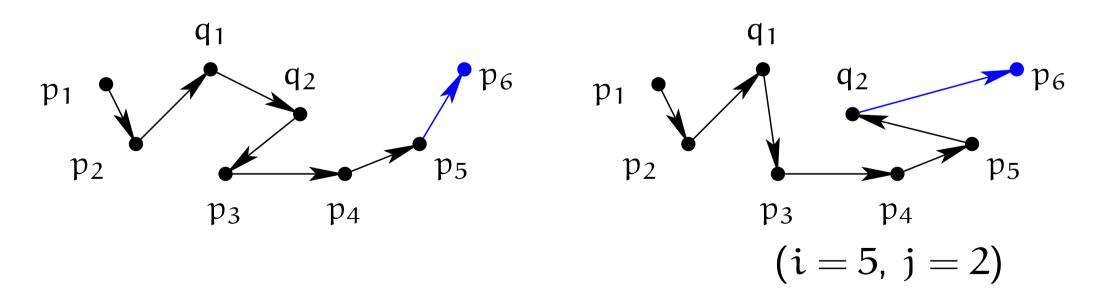
Dynamic programming

a cycl. order on the non-inner pts p_1,\ldots,p_{n-k} a linear order on the inner pts q_1,\ldots,q_k F(i,j) :=the length of a shortest path from p_1 to q_j via p_1, \ldots, p_i and q_1, \ldots, q_j which respects these two orders **q**₁ **q**₂ p_1 \mathfrak{p}_5 p_2 **p**₃ \mathfrak{p}_4 (i = 5, j = 2)

Main recurrence

It holds that

$$\begin{split} F(\underline{i+1}, j) &= \min \text{minimum of} \\ F(\underline{i}, j) + d(p_i, p_{i+1}) \text{ and} \\ F(\underline{i}, \underline{j}) + d(q_j, p_{i+1}). \end{split}$$



 $\frac{19}{\sqrt{}}$

Main recurrence

It holds that

$$\begin{split} \mathsf{F}(\underline{i+1}, j) &= & \text{minimum of} \\ \mathsf{F}(\underline{i}, j) + d(p_i, p_{i+1}) \text{ and} \\ \mathsf{F}(i, \underline{j}) + d(q_j, p_{i+1}). \end{split} \\ \mathsf{F}(i, \underline{j+1}) &= & \text{minimum of} \\ \mathsf{F}(\underline{i}, j) + d(p_i, q_{j+1}) \text{ and} \\ \mathsf{F}(i, \underline{j}) + d(q_j, q_{j+1}). \end{split}$$

♦ By the dynamic programming technique, F(<u>n-k</u>, k) and F(n-k, <u>k</u>) can be computed in O(kn) time.

♦ The length of a shortest tour which respects these two orders is the minimum of $F(\underline{n-k}, k) + d(p_{n-k}, p_1)$ and $F(\underline{n-k}, \underline{k}) + d(q_k, p_1)$.

♦ By the dynamic programming technique, F(<u>n-k</u>, k) and F(n-k, <u>k</u>) can be computed in O(kn) time.

♦ The length of a shortest tour which respects these two orders is the minimum of F(<u>n-k</u>, k) + d(p_{n-k}, p₁) and F(<u>n-k</u>, <u>k</u>) + d(q_k, p₁).

- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (i) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

What remains: the analysis of the running time

Running time

- \blacklozenge # of linear orders on k points = k!.
- They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time =
$$O(n \log n) + O(k!kn)$$
.
 $Convex hull
Computation
When $k = O(\log n / \log \log n)$, this is poly. in n.$

Running time

- \clubsuit # of linear orders on k points = k!.
- They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time =
$$O(n \log n) + O(k!kn)$$
.
 $Convex hull
Computation
When $k = O(\log n / \log \log n)$, this is poly. in n.$

Running time

- \blacklozenge # of linear orders on k points = k!.
- They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time =
$$O(n \log n) + O(k!kn)$$
.
 $Convex hull
Computation
When $k = O(\log n / \log \log n)$, this is poly. in n.$

Running time

- \blacklozenge # of linear orders on k points = k!.
- They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time =
$$O(n \log n) + O(k!kn)$$
.
 $Convex hull
Computation
When $k = O(\log n / \log \log n)$, this is poly. in n.$

Running time

There are k inner points.

- \blacklozenge # of linear orders on k points = k!.
- They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time = $O(n \log n) + O(k!kn)$. Convex hullComputation $When <math>k = O(\log n / \log \log n)$, this is poly. in n.

Running time

- \blacklozenge # of linear orders on k points = k!.
- They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

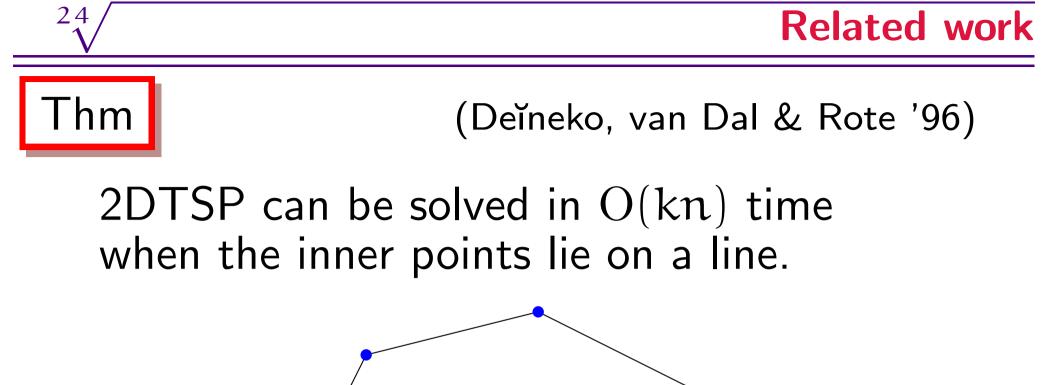
The running time =
$$O(n \log n) + O(k!kn)$$
.
 $Convex hull computation$
When $k = O(\log n / \log \log n)$, this is poly. in n.

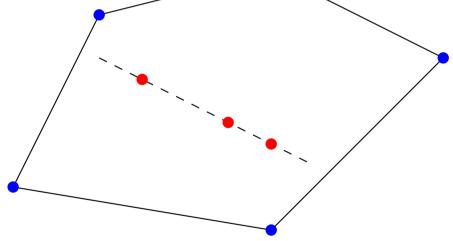
Result

We gave two simple algorithms.

- n := the total number of points
- k := the number of inner points
- First algorithm runs in $O(k!n^{k+1})$ time which is poly. when k = O(1).
- Second algorithm runs in O(k!kn) time which is poly. when $k = O(\log n / \log \log n)$.

Open problem: Improve the bound!





Our work $\begin{cases} \text{ deals with the most general case.} \\ \text{ still runs in linear time in } n. \end{cases}$

Variations

The same strategy works for other problems.

Result

The 2D versions of these problems with k inner points can be solved in polynomial time when $k = O(\log n / \log \log n)$.