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Abstract. In cooperative game theory, a characterization of games with stable
cores is known as one of the most notorious open problems. We study this prob-
lem for a special case of the minimum coloring games, introduced by Deng,
Ibaraki & Nagamochi, which arises from a cost allocation problem when the
players are involved in conflict. In this paper, we show that the minimum color-
ing game on a perfect graph has a stable core if and only if every vertex of the
graph belongs to a maximum clique. We also consider the problem on the core
largeness, the extendability, and the exactness of minimum coloring games.

1 Introduction

One of the scopes of cooperative game theory is to establish the criterion of how to
distribute a given revenue or cost among the agents in a fair manner when they work
in cooperation. Since the effect of cooperation is usually non-linear and non-additive,
the proportional division might not be considered fair. Several criteria, called solutions,
are proposed by many researchers. When game theory was founded, von Neumann &
Morgenstern [24] proposed a solution called a stable set, which turned out to be very
useful for the analysis of a lot of bargaining situations but also turned out to be too
difficult to reveal some fundamental properties. Much easier to investigate is the core,
due to Gillies [11]. So, people are interested in when the core and the stable set coincide,
namely when the core is stable. This question is known as one of the most notorious
problems. So far, there are some necessary or sufficient conditions known (see, e.g.,
[23]), but they are far from a characterization of cooperative games with stable cores.
From the computational point of view, the problem around stable sets is also eccentric.
Deng & Papadimitriou [8] pointed out that determining the existence of a stable set for
a given cooperative game is not known to be computable, and it is still unsolved.

Since combinatorial optimization problems can be found in several real-world situa-
tions, naturally they also raise some revenue/cost allocation problems. A combinatorial
optimization game is a cooperative game which arises from a combinatorial optimiza-
tion problem. There are many kinds of combinatorial optimization games proposed and
studied, according to the underlying combinatorial optimization problems. However,
as far as the core stability is concerned, almost nothing is studied. The only exception
is a work by Solymosi & Raghavan [22] on assignment games.

In this paper, we study core stability of minimum coloring games introduced by
Deng, Ibaraki & Nagamochi [6], which arise from cost allocation problems when the
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agents are involved in conflict [18]. The reason that we restrict to perfect graphs is that it
is NP-complete to decide whether a given graph yields a minimum coloring game with
a nonempty core [6] (meaning that there seems no good characterization of minimum
coloring games with nonempty cores) and that a graph G is perfect if and only if the
minimum coloring game on G is totally balanced [7], where the total balancedness is a
quite nice property. We prove that the minimum coloring game on a perfect graph has a
stable core if and only if every vertex belongs to a maximum clique. We also consider
the problem on the extendability, the largeness, and the exactness of cores, which are
concepts related to core stability. We prove that they are equivalent for the minimum
coloring game on a perfect graph, and also equivalent to that every clique is contained
in a maximum clique.

Armed with our characterizations, we also study algorithmic aspects of these prop-
erties. First we give a polynomial-time algorithm to determine whether a given perfect
graph yields a minimum coloring game with stable core or not. On the other hand, we
prove that it is hard (or coNP-complete, technically speacking) to determine whether a
given perfect graph yields a minimum coloring game which is extendable, exact or with
large core. To the best of our knowledge, this is the first computational intractability
result for extendability, exactness and core largeness of cooperative games.

2 Preliminaries

2.1 Notation

Throughout the paper, for a vector x ∈ IRN and S ⊆ N , we write x(S) :=
∑{xi | i ∈

S}. WhenS = ∅, set x(S) := 0. For a subset S ⊆ N of a finite setN , the characteristic
vector of S is a vector 1lS ∈ {0, 1}N defined as (1lS)i = 1 if i ∈ S and (1lS)i = 0
otherwise. Note that for S, T ⊆ N it holds that 1lS(T ) =

∑{(1lS)i | i ∈ T} = |S ∩T |.
We use the notation A ⊂ B to mean that “A is a proper subset of B.”

2.2 Graphs

A graph G is a pair G = (V,E) of a finite set V , called the set of vertices, and a set
E ⊆

(
V
2

)
of 2-element subsets of V , called the set of edges. For U ⊆ V , the subgraph

of G induced by U is denoted by G[U ], where the vertices of G[U ] are the elements of
U and the edges ofG[U ] are the edges ofG which are also 2-element subsets of U . The
complement of G = (V,E) is a graph with vertex set V and edge set the complement
of E. A clique is a vertex subset inducing a graph with every pair being an edge (such
a graph is called complete). A clique is maximal if none of its proper supersets is a
clique. A clique is maximum if it has a maximum size among all cliques. The size of
a maximum clique of G is denoted by ω(G). An independent set is a vertex subset
inducing a graph with no edge. A coloring of G = (V,E) is a map c : V → IN such
that c(u) 6= c(v) for every {u, v} ∈ E. A minimum coloring of G is a coloring with
minimum possible |c(V )|. The chromatic number ofG is |c(V )| of a minimum coloring
c of G and denoted by χ(G). Conventionally, the chromatic number of a graph with no
vertex is defined to be zero. A graph G = (V,E) is perfect if ω(G[U ]) = χ(G[U ]) for
every U ⊆ V . A prominent example of non-perfect graphs is a cycle of length five.
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2.3 Cooperative games

A cooperative game (or simply a game) is a pair (N, γ) of a nonempty finite set N and
a function γ : 2N → IR satisfying γ(∅) = 0. An element of N is called a player of the
game, and γ is called the characteristic function of the game. Furthermore, each subset
S ⊆ N is called a coalition. Literally, for S ⊆ N the value γ(S) is interpreted as the
total profit (or the total cost) for the players in S when they work in cooperation. In
particular, γ(N) represents the total profit (or cost) for the whole players when they all
agree on working together. When γ represents a profit, we call the game a profit game.
On the other hand, when γ represents a cost, we call the game a cost game. (Thus, the
terms “profit game” and “cost game” are not mathematically determined. They are just
determined by the interpretation of a game.) In this paper, we will mainly consider a
certain class of cost games.

One of the aims of cooperative game theory is to provide a concept of “fairness,”
namely, how to allocate the total cost (or profit) γ(N) to each player in a “fair” man-
ner when we take all the γ(S)’s into account. Now, we concentrate on cost games, and
define some cost allocations which are considered fair in cooperative game theory. For-
mally, a cost allocation is defined as a preimputation in the terminology of cooperative
game theory. A preimputation of a cost game (N, γ) is a vector x ∈ IRN satisfying
x(N) = γ(N). Each component xi expresses how much the player i ∈ N should owe
according to the cost allocation x.

Let (N, γ) be a cost game. A vector x ∈ IRN is called an imputation if x satisfies
the following conditions: x is a preimputation of (N, γ) and xi ≤ γ({i}) for every
i ∈ N . The set of all imputations of (N, γ) is denoted by Imp(N, γ). A vector x ∈ IRN

is called a core allocation if x satisfies the following conditions: x is an imputation
of (N, γ) and x(S) ≤ γ(S) for all S ⊆ N . The set of all core allocations of (N, γ)
is called the core of (N, γ) and denote by Core(N, γ). The core was introduced by
Gillies [11].

Note that Core(N, γ) ⊆ Imp(N, γ) and both can be empty. Therefore, a cost game
with a nonempty core is especially interesting, and such a cost game is called balanced.
Moreover, we call a cost game totally balanced if each of the subgames is balanced.
(Here, a subgame of a cost game (N, γ) is a cost game (T, γ(T )) for some nonempty
T ⊆ N defined as γ(T )(S) = γ(S) for each S ⊆ T .) Naturally, a totally balanced
game is also balanced. A special subclass of the totally balanced games consists of
submodular games (Shapley [20]), where a cost game (N, γ) is called submodular (or
concave) if it satisfies γ(S)+γ(T ) ≥ γ(S∪T )+γ(S∩T ) for all S, T ⊆ N . Therefore,
we have a chain of implications “submodularity⇒ total balancedness⇒ balancedness,”
which are fundamental in cooperative game theory.

Let (N, γ) be a balanced cost game. The core Core(N, γ) is called stable if for ev-
ery y ∈ Imp(N, γ) \ Core(N, γ) there exist a core allocation x ∈ Core(N, γ) and a
nonempty coalition S ⊂ N such that x(S) = γ(S) and xi < yi for each i ∈ S. (The
concept of stability is due to von Neumann & Morgenstern [24].) The core Core(N, γ)
is called large if for every y ∈ IRN satisfying that y(S) ≤ γ(S) for all S ⊆ N
there exists x ∈ Core(N, γ) such that y ≤ x. (The largeness was introduced by
Sharkey [21].) The game (N, γ) is extendable if for every nonempty S ⊆ N and every
y ∈ Core(S, γ(S)) there exists x ∈ Core(N, γ) such that xi = yi for all i ∈ S. (The
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Fig. 1. Implication relationship. The symbol “∧” represents “and.”

extendability was introduced by Kikuta & Shapley [13], and named by van Gellekom,
Potters & Reijnierse [23].) The game (N, γ) is called exact if for every S ⊂ N there
exists x ∈ Core(N, γ) such that x(S) = γ(S). (The exactness was first defined by
Schmeidler [19].) Note that an exact game is always totally balanced.

Here, we summarize the known relationships among these classes of games. See
also Fig. 1. Sharkey [21] showed that if a game is submodular then it has a large core.
Kikuta & Shapley [13] showed that if a balanced game has a large core then it is extend-
able, and if a balanced game is extendable then it has a stable core. Sharkey [21] showed
that if a totally balanced game has a large core then it is exact. Biswas, Parthasarathy,
Potters & Voorneveld [1] pointed out that he actually proved that extendability implies
exactness. The reverse directions in Fig. 1 do not hold in general. (Some of them are
explained by van Gellekom, Potters and Reijnierse [23].)

3 Minimum coloring games

Let G = (V,E) be a graph. The minimum coloring game on G is a cost game (V, χG)
where χG : 2V → IR is defined as χG(S) := χ(G[S]) for all S ⊆ V . Furthermore, we
always assume that V 6= ∅ when we consider the minimum coloring game, so that the
minimum coloring game meets the definition of a cooperative game.

Let us first make some easy observations.

Observation 1. Let G = (V,E) be a graph and (V, χG) be the minimum coloring
game on G.

(a) For every S ⊆ T ⊆ V , it holds that χG(S) ≤ χG(T ).
(b) For every nonempty independent set I ⊆ V of G it holds that χG(I) = 1. In

particular, χG({v}) = 1 for each v ∈ V .
(c) If x ∈ Core(V, χG), then it holds that 0 ≤ xv ≤ 1 for every v ∈ V .

Proof. (a) Since S ⊆ T , we have χ(G[S]) ≤ χ(G[T ]). The claim follows from the
definition of χG.
(b) For a nonempty independent set I , we have χ(G[I ]) = 1.
(c) Let x ∈ Core(V, χG). By the definition of the core and the part (b), we have
that xv ≤ χG({v}) = 1. Suppose that xv < 0 for contradiction. Then, it holds that
χG(V ) < χG(V ) − xv . Furthermore, by part (a) we have χG(V \ {v}) ≤ χG(V ),
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and also we have x(V ) = χG(V ) since x ∈ Core(V, χG). Therefore, we obtain
χG(V \ {v}) ≤ χG(V ) < χG(V ) − xv = x(V ) − xv = x(V \ {v}). This is a
contradiction to x ∈ Core(V, χG). ut

Deng, Nagamochi & Ibaraki [6] proved that it is NP-complete to decide whether
the minimum coloring game on a given graph is balanced. Subsequently, Deng, Ibaraki,
Nagamochi & Zang [7] showed that the minimum coloring game on a graphG is totally
balanced if and only if G is perfect. So the decision problem on the total balancedness
of a minimum coloring game is as hard as recognizing perfect graphs, which was found
to be solved in polynomial time [2, 4]. Furthermore, Okamoto [17] showed that the
minimum coloring game on a graph G is submodular if and only if G is complete
multipartite. So we can decide whether a given graph yields a submodular minimum
coloring game in polynomial time. The following proposition due to Okamoto [18]
characterizes the core of the minimum coloring game on a perfect graph. This will be
used nicely in a later investigation.

Proposition 1 (Okamoto [18]). Let G = (V,E) be a perfect graph. Then, the core of
the minimum coloring game (V, χG) is the convex hull of the characteristic vectors of
maximum cliques of G.

4 Results

4.1 Core stability

The following theorem characterizes totally balanced minimum coloring games with
stable cores.

Theorem 2. Let G = (V,E) be a perfect graph. Then, the minimum coloring game
(V, χG) has a stable core if and only if every vertex v ∈ V belongs to a maximum
clique of G.

First we prove the only-if part of the theorem. The proof uses the following lemma.

Lemma 1. Let G = (V,E) be a graph such that the minimum coloring game (V, χG)
is balanced. If (V, χG) has a stable core, then for every v ∈ V there exists a core
allocation x ∈ Core(V, χG) such that xv 6= 0.

Proof. Assume that Core(V, χG) is stable, and suppose, for the contradiction, there
exists a vertex v ∈ V such that

xv = 0 for all x ∈ Core(V, χG). (1)

(Particularly V 6= ∅.) Take such a vertex v. Let x̂ ∈ Core(V, χG) be an arbitrary core
allocation. Since V 6= ∅, it holds that χG(V ) > 0. So, there exists w ∈ V such that
x̂w > 0. Now, define y ∈ IRV as

yu :=





x̂u if u 6∈ {v, w},
x̂w if u = v,

0 if u = w.
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Namely, y is obtained from x̂ by interchanging the v-th component and the w-th com-
ponent. Then, y is an imputation of (V, χG). Since yv = x̂w > 0, due to (1), we can
see that y is not a core allocation. Hence, y ∈ Imp(V, χG) \ Core(V, χG).

Since Core(V, χG) is stable, there exist a nonempty set S ⊂ V and a core allocation
x ∈ Core(V, χG) such that x(S) = χG(S) and xu < yu for every u ∈ S. Now we
cliam that S \ {v} 6= ∅. To show this, suppose not, i.e., S \ {v} = ∅. Since S 6= ∅, we
have that S = {v}. Then, it follows that

χG({v}) = xv (since χG(S) = x(S))
< yv (since xu < yu for every u ∈ S)
≤ χG({v}) (since y ∈ Imp(V, χG)).

This is a contradiction, hence the claim follows.
Going back to the proof of Lemma 1, we obtain

χG(S) = x(S)

= x(S \ {v}) (by (1))
< y(S \ {v}) (by the choice of x and Claim above)
≤ x̂(S \ {v}) (by the construction of y)
≤ χG(S \ {v}) (since x̂ ∈ Core(V, χG))
≤ χG(S) (by Observation 1(a)).

This is a contradiction. ut
Then, let us prove the only-if part of the theorem.

Proof (of the only-if part of Theorem 2). Assume that (V, χG) has a stable core. By
Lemma 1, for every v ∈ V there exists a core allocation x ∈ Core(V, χG) such that
xv > 0. On the other hand, by Proposition 1, x is a convex combination of the charac-
teristic vectors of maximum cliques ofG. Therefore, at least one maximum clique of G
must contain v. ut

In order to prove the if part, we need some more lemmas.

Lemma 2. Let G = (V,E) be a graph with χ(G) = ω(G). Then, there exists a
nonempty independent set I ⊆ V such that K ∩ I 6= ∅ for every maximum clique
K of G.

Proof. Consider a minimum coloring ofG and take the vertices colored by an identical
color. Denote by I the set of these vertices. By the construction, I is an independent set.
On the other hand, in each maximum clique K of G all colors used to color G can be
found since χ(G) = ω(G) = |K|. Namely, every maximum clique intersects I . Thus,
I is a desired independent set. ut

Here is another lemma.

Lemma 3. Let G = (V,E) be a perfect graph, and consider the minimum coloring
game (V, χG). Then, for every y ∈ Imp(V, χG) \ Core(V, χG) there exists a nonempty
independent set I ⊆ V such that y(I) > χG(I) and yv > 0 for every v ∈ I .
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Proof. Fix y ∈ Imp(V, χG)\Core(V, χG) arbitrary, and define S := {S ⊆ V | y(S) >
χG(S) and yv > 0 for every v ∈ S}.

First, note that S 6= ∅. To see this, since y ∈ Imp(V, χG)\Core(V, χG), there exists
T ′ ⊆ V such that y(T ′) > χG(T ′). Let T := T ′ \ {v ∈ T ′ | yv ≤ 0}. Then, it holds
that y(T ) ≥ y(T ′) > χG(T ′) ≥ χG(T ). (The last inequality is due to T ⊆ T ′ and
Observation 1(a).) Since yv > 0 for each v ∈ T , it follows that T ∈ S. This implies
that S is nonempty.

Choose S ∈ S of minimum size. Since G is perfect, we have that χ(G[S]) =
ω(G[S]). By Lemma 2, there exists a nonempty independent set I ⊆ S such that for
every maximum cliqueK ofG[S] we haveK∩I 6= ∅. Now, we claim that I ∈ S. (This
proves the lemma.) First of all, since I ⊆ S it holds that yv > 0 for every v ∈ I . So it
suffices to show that y(I) > χG(I).

Since I intersects with every maximum clique of G[S], we can see that ω(G[S \
I ]) < ω(G[S]). Since G is perfect, this means that

χG(S \ I) < χG(S). (2)

Since I is nonempty, we have |S \ I | < |S|. By the minimality of S, it holds that

y(S \ I) ≤ χG(S \ I). (3)

Now, we obtain the following.

y(I) = y(S)− y(S \ I) (I ⊆ S)
> χG(S)− χG(S \ I) (S ∈ S and (3))
≥ 1 ((2) and the integrality of χG)
= χG(I) (Observation 1(b)).

This concludes the proof. ut

Now, we are ready to prove the if part of Theorem 2.

Proof (of the if part of Theorem 2). Let y ∈ Imp(V, χG) \ Core(V, χG). Then, by
Lemma 3, there exists a nonempty independent set I ⊆ V such that y(I) > χG(I) = 1
and yv > 0 for every v ∈ I . Denote by K the set of maximum cliques of G. To every
vertex v ∈ I , we assign a maximum clique K(v) ∈ K such that v ∈ K(v), and
fix this assignment. By our assumption, this assignment is well-defined. Since I is an
independent set, this assignment is injective.

For every K ∈ K, let

λK :=





yv
y(I)

if K = K(v) for some v ∈ I

0 otherwise.

Since the assignment v 7→ K(v) is injective, the value λK is well-deined. Then, for
each K ∈ K, we have that 0 ≤ λK ≤ 1 (since yv > 0 for every v ∈ I and y(I) > 1 by
the choice of I with Lemma 3, and yv ≤ 1 for every v ∈ I by Observation 1(b) and the
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definition of an imputation). Furthermore, we can check that
∑
K∈K λK = 1. There-

fore, if we let x :=
∑

K∈K λK1lK , by Proposition 1, it holds that x ∈ Core(V, χG).
If v ∈ I then xv = λK(v). This is because v 6∈ K(u) for u ∈ I \ {v}. Therefore, if

v ∈ I , then

xv = λK(v) =
yv
y(I)

< yv ,

since y(I) > 1. Furthermore, it holds that

x(I) =
∑

u∈I
xu =

∑

u∈I
λK(u) = 1 = χG(I).

Thus, x is an appropriate core allocation and hence the core is stable. ut

4.2 Exactness, extendability, and core largeness

We prove that exactness, extendability and core largeness are equivalent for minimum
coloring games on perfect graphs. This is also characterized in terms of graphs, and
summarized as the following theorem.

Theorem 3. Let G = (V,E) be a perfect graph. Then, the following conditions are
equivalent.

(1) The minimum coloring game (V, χG) is exact.
(2) The minimum coloring game (V, χG) is extendable.
(3) The core Core(V, χG) is large.
(4) Every clique of G is contained in a maximum clique of G.

First remark that the implication “(3) ⇒ (2) ⇒ (1)” is true for any kinds of
games [13]. It remains to prove “(1)⇒ (4)” and “(4)⇒ (3).”

Let us first prove “(1)⇒ (4).”

Proof (of (1) ⇒ (4)). Let G = (V,E) be a perfect graph such that (V, χG) is exact.
Let S be a clique of G. Then, by exactness, there exists x ∈ Core(V, χG) such that
x(S) = χG(S) = |S|. Denoting byK the set of maximum cliques ofG, by Proposition
1, we can express x as

x =
∑

K∈K
λK1lK , (4)

where λK ≥ 0 for everyK ∈ K and
∑

K∈K λK = 1. Then, it holds that

|S| = x(S) =
∑

K∈K
λK1lK(S) (by (4))

=
∑

K∈K
λK |S ∩K|

≤
∑

K∈K
λK |S| (since S ∩K ⊆ S)

= |S|
∑

K∈K
λK = |S| (since

∑

K∈K
λK = 1).



Core Stability of Minimum Coloring Games 9

So, the equality holds throughout the expressions, meaning that S ∩ K = S for each
K ∈ K with λK > 0. Thus, S is contained in a maximum clique of G. ut

To show “(4)⇒ (3),” we use some more facts. The first one is due to van Gellekom,
Potters & Reijnierse [23]. For a cost game (N, γ), let

L(N, γ) := {y ∈ IRN | y(S) ≤ γ(S) for every S ⊆ N},

and call it the set of lower vectors.

Lemma 4 (van Gellekom, Potters & Reijnierse [23]). Let (N, γ) be a balanced cost
game. Then (N, γ) has a large core if and only if y(N) ≥ γ(N) for all extreme points
y of L(N, γ).

In order to apply Lemma 4 to our setting, we have to know the extreme points of
L(V, χG) for a perfect graph G. The following lemma can be shown with a similar
method to the proof of the weak perfect graph conjecture due to Lovász [16].

Lemma 5. Let G = (V,E) be a perfect graph. Then, each extreme point of L(V, χG)
is the characteristic vector of a maximal clique of G.

Armed with Lemmas 4 and 5, we are able to show “(4)⇒ (3).”

Proof (of (4)⇒ (3)). Let G be a perfect graph such that every clique is contained in a
maximum clique of G. Choose an extreme point of L(V, χG). By Lemma 5, this is the
characteristic vector of some maximal cliqueK ofG. Namely, this extreme point is 1lK .
By our assumption, K is a maximum clique of G. Therefore, it holds that 1lK(V ) =
|K| = ω(G) = χG(V ). Hence, by Lemma 4, the core is large. ut

This completes the whole proof of Theorem 3.

5 Algorithmic aspects

In this section, using the theorems we have obtained already, we discuss the algorithmic
issues for minimum coloring games. The first problem we consider is the following.

Problem: CORE STABILITY FOR PERFECT GRAPHS

Instance: A perfect graph G = (V,E)
Question: Does the minimum coloring game (V, χG) have a stable core?

Now, we describe an algorithm which shows the following theorem.

Theorem 4. The problem CORE STABILITY FOR PERFECT GRAPHS can be solved in
polynomial time.

Proof. Consider the algorithm in Algorithm 1.
Let us prove that Algorithm 1 is correct. The first observation is that in each “fore-

ach” loop we compute a clique Kv of maximum size which contains v. That is just
becauseM is huge. Now, if |Kv| < ω(G), then we can see that a maximum clique con-
taining v is not a maximum clique of G. Namely, v is not contained in any maximum
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Algorithm 1: A polynomial-time algorithm for CORE STABILITY FOR PERFECT
GRAPHS

Input: a perfect graph G = (V,E).
Output: “Yes” if (V, χ(G)) has a stable core; “No” otherwise.

1 ω(G)← the weight of a maximum clique in G;
2 M ← |V |;
3 foreach vertex v ∈ V do
4 Set a weight vector w ∈ IRV as wv = M and wu = 1 (u ∈ V \ {v});
5 ω(G,w)← the maximum weight of a clique in G with respect to w;
6 if ω(G,w)− ω(G) < M − 1 then
7 return “No”;

end
end

8 return “Yes”.

clique of G. Then, by Theorem 2, the game does not have a stable core. Therefore, we
have to check that |Kv| < ω(G) if and only if ω(G,w) − ω(G) < M − 1 (i.e., the
condition in Line 6 is true). First of all, we can see that |Kv| = ω(G,w)−M + 1. So,
we have that |Kv| − ω(G) = ω(G,w) − ω(G) +M − 1. Hence, |Kv| < ω(G) holds
if and only if ω(G,w)− ω(G) < M − 1. This completes the proof of the correctness.

Now, we discuss the running time of Algorithm 1. Computing a maximum weight
clique in a perfect graph can be done in polynomial time [12]. So, Lines 1 and 5 can
be executed in polynomial time. Line 2 is also fine. In the “foreach” loop, Line 4 can
be done swiftly. The condition check in Line 6 is easy. The number of iterations of the
foreach loop is at most |V |. Hence, the overall running time is polynomial in the size of
input. ut

Next, we discuss the following three problems.

Problem: EXTENDABILITY FOR PERFECT GRAPHS

Instance: A perfect graph G = (V,E)
Question: Is the minimum coloring game (V, χG) extendable?

Problem: EXACTNESS FOR PERFECT GRAPHS

Instance: A perfect graph G = (V,E)
Question: Is the minimum coloring game (V, χG) exact?

Problem: CORE LARGENESS FOR PERFECT GRAPHS

Instance: A perfect graph G = (V,E)
Question: Does the minimum coloring game (V, χG) have a large core?

Thanks to Theorem 3, these problems are equivalent to the following problem.

Problem: SIZE EQUALITY OF A MAXIMUM CLIQUE AND A MINIMUM MAXI-
MAL CLIQUE IN PERFECT GRAPHS

Instance: A perfect graph G = (V,E)
Question: Do a maximum clique and a minimum maximal clique in G have the
same size?
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This problem turns out to be coNP-complete.

Theorem 5. The problem SIZE EQUALITY OF A MAXIMUM CLIQUE AND A MIN-
IMUM MAXIMAL CLIQUE IN PERFECT GRAPHS is coNP-complete. Consequently,
EXTENDABILITY FOR PERFECT GRAPHS, EXACTNESS FOR PERFECT GRAPHS and
CORE LARGENESS FOR PERFECT GRAPHS are coNP-complete.

Proof. The membership in coNP is immediate. The coNP-hardness follows from a re-
sult due to Zverovich [25]. ut

Theorem 5 deals with perfect graphs in general. Now, let us discuss some special
cases for which the problem can be solved in polynomial time. Observe that, due to
Theorem 3, it suffices to compute a minimum maximal clique in a given perfect graph.
If it is also a maximum clique in the graph, then all maximal cliques are maximum
cliques. Then, the condition (4) in Theorem 3 holds. If not, then this maximal clique is
not contained in a maximum clique, meaning that the condition (4) is violated. Namely,
we consider the following optimization problem.

Problem: MINIMUM MAXIMAL CLIQUE

Instance: A graph G
Feasible solution: A maximal clique K of G
Objective: Minimize |K|.

There are some classes of perfect graphs for which we can solve MINIMUM MAXI-
MAL CLIQUE in polynomial time. They include the bipartite graphs (easy), the compa-
rability graphs [15], the chordal graphs [10], and the complements of chordal graphs [9].
(See also an article by Kratsch [14].) For these classes of graphs, as we already ob-
served, we can conclude the following.

Theorem 6. Consider a class of perfect graphs for which MINIMUM MAXIMAL
CLIQUE can be solved in polynomial time. For this class of graphs, EXTENDABILITY
FOR PERFECT GRAPHS, EXACTNESS FOR PERFECT GRAPHS and CORE LARGENESS
FOR PERFECT GRAPHS can be solved in polynomial time.

6 Summary

We discussed the core stability problem for minimum coloring games, introduced by
Deng, Ibaraki & Nagamochi [6], of perfect graphs. We obtained a good characteriza-
tion for a minimum coloring game with stable core (Theorem 2), and this led us to a
polynomial-time algorithm for the corresponding decision problem (Theorem 4). We
also discussed the extendability, the exactness and the core largeness for minimum col-
oring games of perfect graphs, and characterized them in terms of a property of graphs
(Theorem 3). With this characterization, we showed that it is coNP-complete to deter-
mine whether a given perfect graph yields the minimum coloring game which is ex-
tendable, exact, or with large core (Theorem 5). For some subclasses of perfect graphs,
we know that there exists a polynomial-time algorithm for this problem (Theorem 6).

Little is known about core stability of cooperative games. This paper expanded the
knowledge of this problem, and also gave rise to some algorithmic perspectives.
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