A solution to the Füredi–Hajnal conjecture by Marcus & Tardos

Yoshio Okamoto February 12, 2004 Mittagsseminar

Supported by the Berlin-Zürich Joint Graduate Program

The Füredi–Hajnal Conjecture

(Füredi & Hajnal, '92)

The number of 1-entries in an $n \times n$ 0/1-matrix avoiding an arbitrary fixed permutation matrix = O(n).

Conj.

Solved by A. Marcus & G. Tardos (Nov. '03)

Goal of this talk Look at their proof

and unsolved problems

(1) Definitions for the conjecture

- (2) Proof by Marcus & Tardos
- (3) Motivation
- (4) Open problems

Setup

- A an $n \times n 0/1$ -matrix
- P a $k \times \ell$ 0/1-matrix $(k, \ell \leq n)$

A contains P if $\exists a k \times \ell$ submatrix B of A s.t. $p_{ij} = 1 \implies b_{ij} = 1$

Setup

Def.

A an $n \times n 0/1$ -matrix P a $k \times \ell$ 0/1-matrix $(k, \ell \leq n)$ A contains P if $\exists a k \times \ell$ submatrix B of A s.t. $p_{ij} = 1 \implies b_{ij} = 1$ $A = \left| \begin{array}{cccccc} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right|$ $P = \left| \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right|$

Setup

Def.

A an $n \times n 0/1$ -matrix P a $k \times \ell$ 0/1-matrix $(k, \ell \leq n)$ A contains P if $\exists a k \times \ell$ submatrix B of A s.t. $p_{ij} = 1 \implies b_{ij} = 1$

Setup

Def.

A an $n \times n 0/1$ -matrix P a $k \times \ell$ 0/1-matrix $(k, \ell \leq n)$ A contains P if $\exists a k \times \ell$ submatrix B of A s.t. $p_{ij} = 1 \implies b_{ij} = 1$ $= \begin{vmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{vmatrix}$ $\begin{array}{c|c} 1 & 0 & 1 \\ \hline 0 & 1 & 0 \end{array}$

Setup

Def.

A an $n \times n 0/1$ -matrix P a $k \times \ell$ 0/1-matrix $(k, \ell \leq n)$ A contains P if $\exists a k \times \ell$ submatrix B of A s.t. $p_{ij} = 1 \implies b_{ij} = 1$ $A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$ $\begin{array}{c|c} 1 & 0 & 1 \\ \hline 0 & 1 & 0 \end{array}$

Setup

Def.

A an $n \times n 0/1$ -matrix P a $k \times \ell$ 0/1-matrix $(k, \ell \leq n)$ A contains P if $\exists a k \times \ell$ submatrix B of A s.t. $p_{ij} = 1 \implies b_{ij} = 1$

A =

Setup

Def.

A an $n \times n \ 0/1$ -matrix P a $k \times \ell \ 0/1$ -matrix $(k, \ell \le n)$ A contains P if $\exists a \ k \times \ell$ submatrix B of A s.t. $p_{ij} = 1 \implies b_{ij} = 1$

Otherwise, A avoids P

Permutation matrices

A permutation matrix is a 0/1-matrix in which every row and column contains exactly one 1.

Permutation matrices

A permutation matrix is a 0/1-matrix in which every row and column contains exactly one 1.

Permutation matrices

A permutation matrix is a 0/1-matrix in which every row and column contains exactly one 1.

Conj.

(Füredi & Hajnal '92)

P a permutation matrix

f(n, P) = O(n)

Conj.

(Füredi & Hajnal '92)

P a permutation matrix

f(n, P) = O(n)

recently by A. Marcus & G. Tardos

Conj.

(Füredi & Hajnal '92)

P a permutation matrix

f(n, P) = O(n)

Solved recently by A. Marcus & G. Tardos

Easy observation $n \leq f(n, P) \leq n^2$.

Solution by Marcus & Tardos

P a $k \times k$ permutation matrix

(Marcus & Tardos)

$$f(n, P) \le (k-1)^2 f\left(\frac{n}{k^2}, P\right) + 2k^3 \binom{k^2}{k} n.$$

when n divisible by k^2 .

Thm

Lem

(Marcus & Tardos)

$$f(n, P) \le 2k^4 \binom{k^2}{k} n.$$

 $\frac{8}{\sqrt{}}$

Proof of Lemma (1): Blocks

P a $k \times k$ permutation matrix (fixed)

A an $n \times n$ matrix attaining f(n, P)Divide into $(n/k^2) \times (n/k^2)$ blocks

Proof of Lemma (2): A reduced matrix B Define an $(n/k^2) \times (n/k^2)$ matrix B as $B_{ij} = \begin{cases} 0 & \text{if } S_{ij} \text{ contains no } 1 \\ 1 & \text{if } S_{ij} \text{ contains a } 1 \end{cases}$ 1 1 $\left(\right)$ $\mathsf{B} = \left| \begin{array}{c|c} 1 & 1 \end{array} \right| \, \mathbf{0}$ 0 0 1 1 0 $1 \mid 1$ ()

Proof of Lemma (2): A reduced matrix B Define an $(n/k^2) \times (n/k^2)$ matrix B as $B_{ij} = \begin{cases} 0 & \text{if } S_{ij} \text{ contains no } 1 \\ 1 & \text{if } S_{ij} \text{ contains a } 1 \end{cases}$ 1 1 $\left(\right)$ $= \begin{vmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{vmatrix} \quad B = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{vmatrix}$ 1 1 $\left(\right)$

Proof of Lemma (2): A reduced matrix B Define an $(n/k^2) \times (n/k^2)$ matrix B as $B_{ij} = \begin{cases} 0 & \text{if } S_{ij} \text{ contains no } 1 \\ 1 & \text{if } S_{ij} \text{ contains a } 1 \end{cases}$ 1 1 \mathbf{O} $= \begin{vmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{vmatrix} \quad B = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$ 0 1 $\left(\right)$

Proof of Lemma (2): A reduced matrix B Define an $(n/k^2) \times (n/k^2)$ matrix B as $B_{ij} = \begin{cases} 0 & \text{if } S_{ij} \text{ contains no } 1 \\ 1 & \text{if } S_{ij} \text{ contains a } 1 \end{cases}$ 1 1 \mathbf{O} $\mathbf{0}$ 0 1 1 0 1 ()

Proof of Lemma (2): A reduced matrix B Define an $(n/k^2) \times (n/k^2)$ matrix B as $B_{ij} = \begin{cases} 0 & \text{if } S_{ij} \text{ contains no } 1 \\ 1 & \text{if } S_{ij} \text{ contains a } 1 \end{cases}$ 1 1 \mathbf{O} 0 1 1 ()

So far, we obtained

10

$$\# \text{ of nonzero blocks} \leq f\left(\frac{n}{k^2}, P\right).$$

$$\# \text{ of 1's in each block} \leq f(k^2, P).$$

 \clubsuit # of I's in each block $\leq f(k^2, P)$.

Intermezzo

So far, we obtained

10

$$\label{eq:product} \# \mbox{ of nonzero blocks} \leq f\left(\frac{n}{k^2}, P\right). \\ \product \# \mbox{ of 1's in each block} \leq f(k^2, P). \\ \mbox{Therefore, we get}$$

$$f(n, P) \leq f\left(\frac{n}{k^2}, P\right) f(k^2, P).$$

Intermezzo

So far, we obtained

10

$$f(n, P) \le f\left(\frac{n}{k^2}, P\right) f(k^2, P),$$

which would give f(n, P) = O(n), if it would hold $f(k^2, P) < k^2$.

⇒ Need more observations!!

Intermezzo

So far, we obtained

$$f(n, P) \le f\left(\frac{n}{k^2}, P\right) f(k^2, P),$$

which would give f(n, P) = O(n), if it would hold $f(k^2, P) < k^2$.

 \Rightarrow <u>Need more observations!</u>

IDEA: Look at blocks with many 1's separately.

 k^2

13/1

Proof of Lemma (5): Classification

- Zero blocks
 - each contains no 1.
- (2) Nonzero tall blocks
 - each contains ≤ k⁴ 1's (by triv. Obs.)
 # of such blocks ≤ $\frac{n}{k^2}k\binom{k^2}{k}$ (by Obs. 2)
- (3) Nonzero wide blocks
 - \blacklozenge each contains $\leq k^4$ 1's (by triv. Obs.)
 - $\oint \# \text{ of such blocks} \le \frac{n}{k^2} k \binom{k^2}{k} \quad \text{(by Obs. 3)}$
- (4) Nonzero blocks neither tall nor wide
 - ♦ each contains ≤ (k − 1)² 1's (by Def.)
 ♦ # of such blocks ≤ f(ⁿ/_{k²}, P) (by Obs. 1)

Proof of Lemma (6): Putting them together f(n, P) < 0 $+ k^4 \times \frac{n}{k^2} k \binom{k^2}{k}$ + $k^4 \times \frac{n}{k^2} k \binom{k^2}{k}$ + $(k-1)^2 \times f\left(\frac{n}{\nu^2}, P\right)$ $= 2k^3 \binom{k^2}{k} n + (k-1)^2 f\left(\frac{n}{k^2}, P\right).$

[QED]

(1) Definitions for the conjecture

- (2) Proof by Marcus & Tardos
- (3) Motivation

15

(4) Open problems

Back to Erdős...

Question

(Erdős & Moser '59)

What is the maximum possible number of unit distances among n points in convex position on the plane?

16

(Erdős & Moser '59)

What is the maximum possible number of unit distances among n points in convex position on the plane?

Lower bound

♦ Erdős & Moser '59 →
$$\left\lfloor \frac{5}{3}(n-1) \right\rfloor$$
.
♦ Edelsbrunner & Hajnal '91 → 2n - 7.

Back to Erdős...

Question

(Erdős & Moser '59)

What is the maximum possible number of unit distances among n points in convex position on the plane?

Upper bound

Füredi '90 $\rightarrow O(n \log n)$.

Back to Erdős...

Question

(Erdős & Moser '59)

What is the maximum possible number of unit distances among n points in convex position on the plane?

Upper bound

Füredi '90 $\rightarrow O(n \log n)$.

Key Lemma

(Füredi '90)

$$f(n, \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}) = \Theta(n \log n).$$

Thm

What Füredi & Hajnal did

Füredi & Hajnal ('92) investigated the all cases when P contains exactly four 1's. Especially...

(Füredi & Hajnal '92)

$$f(n, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}) = \Theta(n^{3/2})$$

Proof by Extremal Graph Theory.

What Füredi & Hajnal did

Füredi & Hajnal ('92) investigated the all cases when P contains exactly four 1's. Especially...

Thm

(Füredi & Hajnal '92)

fn)

$$f(n, \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}) = \Theta(n\alpha(n))$$
$$(\alpha(n) = \text{the inverse Ackermann})$$

by Davenport-Schinzel sequences.

$$\frac{18}{\sqrt{}}$$

Füredi '90

Upper bound for the unit distance problem
 Füredi & Hajnal '92

- Relation to Extremal Graph Theory
- Generalization of Davenport–Schinzel seq's

 $\frac{18}{\sqrt{}}$

Füredi '90

Upper bound for the unit distance problem
 Füredi & Hajnal '92

- Relation to Extremal Graph Theory
- Generalization of Davenport–Schinzel seq's

Klazar '00

 $\blacklozenge \ \mathsf{Füredi-Hajnal} \ \mathsf{Conj.} \ \Rightarrow \ \mathsf{Stanley-Wilf} \ \mathsf{Conj.}$

- \forall permutation π of [k]: \exists a constant c s.t.
 - "# of perm's of [n] avoiding π " $\leq c^{n}$.

"# of perm's of [n] avoiding π " $\leq c^{n}$.

Cor.

The Stanley–Wilf conjecture is true.

 $\lim_{n\to\infty} ("\# of perm's of [n] avoiding \pi")^{1/n} = c.$

 $\lim_{n\to\infty} ("\# of perm's of [n] avoiding \pi")^{1/n} = c.$

Cor. The conj. is true with $c \leq 15^{2k^4\binom{k^2}{k}}$.

 $\lim_{n\to\infty} ("\# of perm's of [n] avoiding \pi")^{1/n} = c.$

Cor. The conj. is true with $c \leq 15^{2k^4\binom{k^2}{k}}$.

Another Conj.
$$c \le (k-1)^2$$
.
(Arratia '99, still open)

- Affirmative answer to a conj. of Alon-Friedgut ('00) on the max. length of sparse word avoiding a permutation
 Characterization of 0/1-matrices P which have at most exponentially many n×n
 - 0/1-matrices avoiding P

Some more open problems (1)

Problem

(Füredi & Hajnal '92)

Characterize the matrices P with f(n, P) = O(n).

Problem

(Marcus & Tardos)

Find minimally nonlinear patterns P with more than four 1's.

Some more open problems (2)

Problem

(Füredi & Hajnal '92)

G a bipartite graph P_G the $0/1\mbox{-matrix}$ corresponding to G

 $\frac{23}{\sqrt{}}$

Some more open problems (2)

Problem

(Füredi & Hajnal '92)

G a bipartite graph P_G the 0/1-matrix corresponding to G $f(n, P) = O(Turan(n, G) \log n)??$ Turan $(n, G) = \max$. # of edges in an n-vert. graph avoiding G u_1 1 u

The Füredi–Hajnal Conj. has been solved.

- The Stanley–Wilf Conj. has been solved.
- Still problems are remaining.
- New progress on
 - Extremal 0/1-matrix theory (Füredi & Hajnal '92, Tardos)
 Extremal ordered graph theory (Klazar '04, Brass, Károlyi & Valtr '03).

[End of the talk]