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() The Füredi–Hajnal Conjecture

. Conj.Conj. (Füredi & Hajnal, ’92)

The number of 1-entries in an n×n
0/1-matrix avoiding an arbitrary fixed
permutation matrix = O(n).

. SolvedSolved by A. Marcus & G. Tardos (Nov. ’03)

. Goal of this talkGoal of this talk Look at their proof

. Goal of this talkGoal of this talk and unsolved problems
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() Contents of the talk

(1) Definitions for the conjecture

(2) Proof by Marcus & Tardos

(3) Motivation

(4) Open problems
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() Avoiding a matrix

. SetupSetup A an n×n 0/1-matrix

P a k×` 0/1-matrix (k, ` ≤ n)

. Def.Def. A contains P if

∃ a k×` submatrix B of A s.t.
pij = 1 ⇒ bij = 1
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() Avoiding a matrix

. SetupSetup A an n×n 0/1-matrix

P a k×` 0/1-matrix (k, ` ≤ n)

. Def.Def. A contains P if

∃ a k×` submatrix B of A s.t.
pij = 1 ⇒ bij = 1

Otherwise, A avoids P
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() Permutation matrices

. Def.Def. A permutation matrix is a 0/1-matrix

in which
every row and column contains
exactly one 1.
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() Extremal problem

. SetupSetup P a 0/1-matrix (fixed)

. Q.Q. What is the maximum number of 1’s

in an n×n 0/1-matrix avoiding P??

. Def.Def. f(n, P) = such a maximum

. Trivial ObservationTrivial Observation

f(n, P) ≤ n2
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() Conjecture

. Conj.Conj. (Füredi & Hajnal ’92)

P a permutation matrix

f(n, P) = O(n)

. SolvedSolved recently by A. Marcus & G. Tardos

. Easy observationEasy observation n ≤ f(n, P) ≤ n2.
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() Solution by Marcus & Tardos

P a k×k permutation matrix

. LemLem (Marcus & Tardos)

f(n, P) ≤ (k− 1)2f
( n
k2
, P
)

+ 2k3
(
k2

k

)
n.

when n divisible by k2.

. ThmThm (Marcus & Tardos)

f(n, P) ≤ 2k4
(
k2

k

)
n.
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() Proof of Lemma (1): Blocks

. SetupSetup P a k×k permutation matrix (fixed)

A an n×n matrix attaining f(n, P)

A =

n

n

8



8
p

() Proof of Lemma (1): Blocks

. SetupSetup P a k×k permutation matrix (fixed)

A an n×n matrix attaining f(n, P)
Divide into (n/k2)×(n/k2) blocks

i

j

A =
a k2×k2 matrix

Sij

1 n/k22

n/k2

2
1
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() Proof of Lemma (2): A reduced matrix B

Define an (n/k2)×(n/k2) matrix B as

Bij =

{
0 if Sij contains no 1
1 if Sij contains a 1
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Observation 1: B avoids P.
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() Proof of Lemma (2): A reduced matrix B

Define an (n/k2)×(n/k2) matrix B as

Bij =

{
0 if Sij contains no 1
1 if Sij contains a 1
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() Intermezzo

So far, we obtained

�� # of nonzero blocks ≤ f
( n
k2
, P
)

.

�� # of 1’s in each block ≤ f(k2, P).

Therefore, we get

f(n, P) ≤ f
( n
k2
, P
)
f(k2, P),

which would give f(n, P) = O(n),
if it would hold f(k2, P) < k2.

⇒ Need more observations!!

IDEA: Look at blocks with many 1’s separately.
10
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() Proof of Lemma (3): Tall blocks

. Def.Def. A block Sij is tall if

∃ at least k nonzero rows in it

1 01 1 0 0

00100

00 0 1 0 0
010100

000

0 0 0

0 0 0

0Sij = k20 0

k2

0
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() Proof of Lemma (3): Tall blocks

. Def.Def. A block Sij is tall if

∃ at least k nonzero rows in it

Observation 2: ∀i: |{j | Sij tall}| < k

(
k2

k

)

k2

k2

NOTTALLNOTTALL

n

Si2 Si,n/k2Si3Si1
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() Proof of Lemma (3): Tall blocks

. Def.Def. A block Sij is tall if

∃ at least k nonzero rows in it

Observation 2: ∀i: |{j | Sij tall}| < k

(
k2

k

)

[Proof] Fix k rows out of k2

# of Sij’s with 1’s in all of these rows < k.
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1
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1
1

1

1

1

1

1

1
1

1

1

1
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() Proof of Lemma (4): Wide blocks

. Def.Def. A block Sij is wide if

∃ at least k nonzero columns in it

Observation 3: ∀j: |{i | Sij wide}| < k

(
k2

k

)

[Proof] The same argument as Obs. 2.
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() Proof of Lemma (5): Classification

(1) Zero blocks
�� each contains no 1.

(2) Nonzero tall blocks

�� each contains ≤ k4 1’s (by triv. Obs.)

�� # of such blocks ≤ n
k2
k
(
k2

k

)
(by Obs. 2)

(3) Nonzero wide blocks

�� each contains ≤ k4 1’s (by triv. Obs.)

�� # of such blocks ≤ n
k2
k
(
k2

k

)
(by Obs. 3)

(4) Nonzero blocks neither tall nor wide

�� each contains ≤ (k− 1)2 1’s (by Def.)

�� # of such blocks ≤ f( n
k2
, P) (by Obs. 1)
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() Proof of Lemma (6): Putting them together

f(n, P) ≤ 0

+ k4 × n

k2
k

(
k2

k

)

+ k4 × n

k2
k

(
k2

k

)

+ (k− 1)2 × f
( n
k2
, P
)

= 2k3
(
k2

k

)
n+ (k− 1)2f

( n
k2
, P
)
.

[QED]
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() Contents of the talk

(1) Definitions for the conjecture

(2) Proof by Marcus & Tardos

(3) Motivation

(4) Open problems
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() Back to Erdős...

. QuestionQuestion (Erdős & Moser ’59)

What is the maximum possible number
of unit distances among n points in
convex position on the plane?
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() Back to Erdős...

. QuestionQuestion (Erdős & Moser ’59)

What is the maximum possible number
of unit distances among n points in
convex position on the plane?

Lower bound

�� Erdős & Moser ’59 →
⌊
5

3
(n− 1)

⌋
.

�� Edelsbrunner & Hajnal ’91 → 2n− 7.
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�� Füredi ’90 → O(n logn).

. Key LemmaKey Lemma (Füredi ’90)

f(n,

(
1 1 0
1 0 1

)
) = Θ(n logn).
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() What Füredi & Hajnal did

Füredi & Hajnal (’92) investigated the all cases
when P contains exactly four 1’s. Especially...

. ThmThm (Füredi & Hajnal ’92)

f(n,

(
1 1
1 1

)
) = Θ(n3/2)

. ProofProof by Extremal Graph Theory.
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() What Füredi & Hajnal did

Füredi & Hajnal (’92) investigated the all cases
when P contains exactly four 1’s. Especially...

. ThmThm (Füredi & Hajnal ’92)

f(n,

(
1 0 1 0
0 1 0 1

)
) = Θ(nα(n))

(α(n) = the inverse Ackermann fn)

. ProofProof by Davenport–Schinzel sequences.
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() Why is it interesting?

Füredi ’90

�� Upper bound for the unit distance problem

Füredi & Hajnal ’92

�� Relation to Extremal Graph Theory
�� Generalization of Davenport–Schinzel seq’s
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() Why is it interesting?

Füredi ’90

�� Upper bound for the unit distance problem

Füredi & Hajnal ’92

�� Relation to Extremal Graph Theory
�� Generalization of Davenport–Schinzel seq’s

Klazar ’00

�� Füredi–Hajnal Conj. ⇒ Stanley–Wilf Conj.
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() The Stanley–Wilf conjecture

. Conj.Conj. (Stanley & Wilf)

∀ permutation π of [k]: ∃ a constant c s.t.

“# of perm’s of [n] avoiding π” ≤ cn.

. Cor.Cor.

The Stanley–Wilf conjecture is true.
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() The Stanley–Wilf conjecture II

. Conj.Conj. (Stanley & Wilf)

∀ permutation π of [k]: ∃ a constant c s.t.

lim
n→∞

(“# of perm’s of [n] avoiding π”)1/n = c.
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() The Stanley–Wilf conjecture II

. Conj.Conj. (Stanley & Wilf)

∀ permutation π of [k]: ∃ a constant c s.t.

lim
n→∞

(“# of perm’s of [n] avoiding π”)1/n = c.

. Cor.Cor. The conj. is true with c ≤ 152k4(k
2

k ).
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() The Stanley–Wilf conjecture II

. Conj.Conj. (Stanley & Wilf)

∀ permutation π of [k]: ∃ a constant c s.t.

lim
n→∞

(“# of perm’s of [n] avoiding π”)1/n = c.

. Cor.Cor. The conj. is true with c ≤ 152k4(k
2

k ).

. Another Conj.Another Conj. c ≤ (k− 1)2.

(Arratia ’99, still open)
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() Some more consequences

�� Affirmative answer to a conj. of
Alon–Friedgut (’00) on the max. length of
sparse word avoiding a permutation

�� Characterization of 0/1-matrices P which
have at most exponentially many n×n
0/1-matrices avoiding P
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() Some more open problems (1)

. ProblemProblem (Füredi & Hajnal ’92)

Characterize the matrices P with
f(n, P) = O(n).

. ProblemProblem (Marcus & Tardos)

Find minimally nonlinear patterns P
with more than four 1’s.
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() Some more open problems (2)

. ProblemProblem (Füredi & Hajnal ’92)

G a bipartite graph
PG the 0/1-matrix corresponding to G

f(n, P) = O(Turan(n,G) logn)??

PG =

u1

u2

u3

v2v1

1

1

0

1

0

1v2

Gu3

u2

u1
v1
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() Some more open problems (2)

. ProblemProblem (Füredi & Hajnal ’92)

G a bipartite graph
PG the 0/1-matrix corresponding to G

f(n, P) = O(Turan(n,G) logn)??

Turan(n,G) = max. # of edges in
an n-vert. graph avoiding G

PG =

u1

u2

u3

v2v1

1

1

0

1

0

1v2

Gu3

u2

u1
v1
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() Conclusion

�� The Füredi–Hajnal Conj. has been solved.
�� The Stanley–Wilf Conj. has been solved.
�� Still problems are remaining.
�� New progress on

•• Extremal 0/1-matrix theory
(Füredi & Hajnal ’92, Tardos)

•• Extremal ordered graph theory
(Klazar ’04, Brass, Károlyi & Valtr ’03).

[End of the talk]
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