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v/ The Fiiredi—-Hajnal Conjecture

Conj. (Furedi & Hajnal, '92)

The number of T-entries in an nxn
0/1-matrix avoiding an arbitrary fixed

permutation matrix = O(n).

Solved | by A. Marcus & G. Tardos (Nov. '03)

Goal of this talk | Look at their proof

and unsolved problems



Y/ Contents of the talk

(1) Definitions for the conjecture
(2) Proof by Marcus & Tardos
(3) Motivation

(4) Open problems



Avoiding a matrix

vV
A an nxn 0/1-matrix

Pa kx{ 0/1-matrix (k,£ <n)
Def. A contains P if

d4 a kx{ submatrix B of A s.t.
pij =1 = by =1
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Avoiding a matrix

vV
A an nxn 0/1-matrix

Pa kx{ 0/1-matrix (k,£ <n)
Def. A contains P if

d4 a kx{ submatrix B of A s.t.
pij =1 = by =1
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Avoiding a matrix

vV
A an nxn 0/1-matrix

Pa kx{ 0/1-matrix (k,£ <n)
Def. A contains P if
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Avoiding a matrix

vV
A an nxn 0/1-matrix

Pa kx{ 0/1-matrix (k,£ <n)
Def. A contains P if

d4 a kx{ submatrix B of A s.t.
pij =1 = by =1

Otherwise, A avoids P



L\‘/ Permutation matrices

Def. A permutation matrix is a 0/1-matrix

in which
every row and column contains
exactly one 1.

1 0 0 O 0 1 0O 0 010
01 00 0 0 0 1 1 000
0 010 1 0 0O 0 1 0O
0 0 0 1 0 010 0 0 0 1
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L\‘/ Permutation matrices

Def. A permutation matrix is a 0/1-matrix

in which
every row and column contains
exactly one 1.

1 0 0 O 0 1 0O 0 010
0 1 0O 0 0 0 1 1 0 0O
0 010 1 0 0 O 0 1 0O
0 0 0 1 0 010 0 0 0 1




Extremal problem

Setup

EIQ

Def.

P a 0/1-matrix (fixed)

What is the maximum number of 1's
in an nxn 0/1-matrix avoiding P77

f(n,P) = such a maximum



Extremal problem

Setup P a 0/1-matrix (fixed)

EIQ

What is the maximum number of 1's
in an nxn 0/1-matrix avoiding P77

Def. f(n,P) = such a maximum

Trivial Observation

f(n,P) < n?



S/ Conjecture

Conj. (Furedi & Hajnal '92)

P a permutation matrix

f(n,P) =0(n)
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S/ Conjecture

Conj. (Furedi & Hajnal '92)

P a permutation matrix

f(n,P) = O(n)
Solved | recently by A. Marcus & G. Tardos

Easy observation | n < f(n,P) < n?.



{/ Solution by Marcus & Tardos

P a kxk permutation matrix

Lem (Marcus & Tardos)

f(n,P) < (k—1)*f (% P) + 2Kk3 <]i>n

when 1 divisible by k.
Thm (Marcus & Tardos)

2
f(n,P) < 2k* (]; )n.



Y/ Proof of Lemma (1): Blocks

P a kxk permutation matrix (fixed)

A an nxXn matrix attaining f(n, P)




Y/ Proof of Lemma (1): Blocks

P a kxk permutation matrix (fixed)

A an nxm matrix attaining f(n, P)
Divide into (n/k?)x(n/k?) blocks

I
2
A — =R
j( 1 a k% xk? matrix
n/k?

1 2 i n/k?



Z/ Proof of Lemma (2): A reduced matrix B

Define an (n/k?)x(n/k?) matrix B as

0 if Si; contains no 1

Bij = <\1 if Si; contains a 1
1 0[0 1]0 0
0.0l0 0]0 0 11110
(110 1(0 0 B
A=lp1l10lgol B=|1]1]0O
0 0/0 1]1 0
00l00l1 1 0 (1|1




Z/ Proof of Lemma (2): A reduced matrix B

Define an (n/k?)x(n/k?) matrix B as

0 if Si; contains no 1

Bij = <\1 if Si; contains a 1
1 00 1]0 0
0.0l0 0l0 0 11170
1100 1[0 0 B
A=l01l10logl B=|1]1]0
00/0 1/1 0
00l00l11 0] 1]1

Observation 1: B avoids P.



Z/ Proof of Lemma (2): A reduced matrix B

Define an (n/k?)x(n/k?) matrix B as

0 if Si; contains no 1

Bij = <\1 if Si; contains a 1
1 0[0 1]0 0
0.0l0 0l0 0 11110
1100 1[0 0 B
A=l01l10log B=|1]1]0
00/0 1/1 0
00l00l11 011 )1

Observation 1: B avoids P.



Z/ Proof of Lemma (2): A reduced matrix B

Define an (n/k?)x(n/k?) matrix B as

0 if Si; contains no 1

Bij = <\1 if Si; contains a 1

1 00 1]0 0

0.0l0 0l0 0 11110
~[11l0 1[0 0 B

0 0/0 1|1

oooo1ﬁ Ofi}d

Observation 1: B avoids P.



Z/ Proof of Lemma (2): A reduced matrix B
Define an (n/k?)x(n/k?) matrix B as

0 if Si; contains no 1

Bij = <\1 if Si; contains a 1
1 0[01]0 0
0 0lo 0lo 0 11110
1110 1]0 B
A=\51Hnlom B=|1]1]o0
0 0 119
0 0 011 1

Observation 1: B avoids P.
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So far, we obtained
& + of nonzero blocks < f (%, P).
¢ +# of 1's in each block < f(k?,P).
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Intermezzo

So far, we obtained

& + of nonzero blocks < f (%, P).
¢ # of 1's in each block < f(k?, P).

Therefore, we get
n
f(T'L, P) S f (ﬁ) P) f(k2> P)>

which would give f(n,P) = O(n),
if it would hold f(k?,P) < k~.

— Need more observations!!




Y/ Intermezzo
So far, we obtained

& + of nonzero blocks < f (%, P).

¢ # of 1's in each block < f(k?, P).
Therefore, we get

f(n,P) < f (% P) f(k2,P),

which would give f(n,P) = O(n),
if it would hold f(k?,P) < k~.

— Need more observations!!
IDEA: Look at blocks with many 1's separately.




Proof of Lemma (3): Tall blocks

- A block Sy; is tall if

- at least k nonzero rows In It




Proof of Lemma (3): Tall blocks

- A block Si; is tall if

- at least k nonzero rows In It

kZ
Observation 2: Vi: |{j | Sy; tall}| < k( >

TALL NOT TALL NOT




Proof of Lemma (3): Tall blocks

- A block Si; is tall if

- at least k nonzero rows In It

kZ
Observation 2: Vi: [{j | Si; tall}| < k( k>

[Proof] Fix k rows out of k?
# of Si3's with 1's in all of these rows < k.

= = =




Proof of Lemma (4): Wide blocks

- A block Sij I1s wide if

= at least k nonzero columns In it

kZ
Observation 3: Vj: [{i| Si; widej| < k( k)

[Proof| The same argument as Obs. 2.



Y

Proof of Lemma (5): Classification

(1) Zero blocks

¢ cach contains no 1.

(2) Nonzero tall

blocks

¢ each contains < k* 1's (by triv. Obs.)

¢ + of suc

2
1 blocks < {5k(%))  (by Obs. 2)

(3) Nonzero wic

e blocks

¢ each contains < k% 1's (by triv. Obs.)
2
& + of such blocks < - k(kk) (by Obs. 3)

S 2

(4) Nonzero blocks neither tall nor wide

¢ cach contains < (k—1)% 1's  (by Def.)
& + of such blocks < f(&,P) (by Obs. 1)

2>



'3/ Proof of Lemma (6): Putting them together

fin,P) < O

N 2
+ k4><1k<k>

k2 k
n k2
k* x —k
T X 13 (k)

+o(k—1)2 xf(%,P)

= 20 s e 12 (S0P)

[QED]



1?/ Contents of the talk

(1) Definitions for the conjecture
(2) Proof by Marcus & Tardos
(3) Motivation

(4) Open problems



'/ Back to Erdés...

(Erdés & Moser '59)

What is the maximum possible number
of unit distances among n points in
convex position on the plane?



'/ Back to Erdés...

(Erdés & Moser '59)

What is the maximum possible number
of unit distances among n points in
convex position on the plane?

Lower bound

5
¢ Erdos & Moser '59 — g(n— 1)].

¢ Edelsbrunner & Hajnal '91 — 2n — 7.




'/ Back to Erdés...

(Erdés & Moser '59)

What is the maximum possible number
of unit distances among n points in
convex position on the plane?

Upper bound

¢ Firedi '90 —» O(nlogn).



'/ Back to Erdés...

(Erdés & Moser '59)

What is the maximum possible number
of unit distances among n points in
convex position on the plane?

Upper bound

¢ Firedi '90 —» O(nlogn).

v

f(n, G ; ?)):@(nlogn).



'/ What Firedi & Hajnal did

Firedi & Hajnal ('92) investigated the all cases
when P contains exactly four 1's. Especially...

Thm (Furedi & Hajnal '92)
1 1\, 3/2
fm, (1 1)) =0Mm*?

Proof | by Extremal Graph Theory.



'/ What Firedi & Hajnal did

Firedi & Hajnal ('92) investigated the all cases
when P contains exactly four 1's. Especially...

Thm (Furedi & Hajnal '92)

fin (g § o 1))=©matn)

(a¢(mn) = the inverse Ackermann fn)

Proof | by Davenport—Schinzel sequences.



'3/ Why is it interesting?

Furedi '90
¢ Upper bound for the unit distance problem
Furedi & Hajnal '92

¢ Relation to Extremal Graph Theory
¢ Generalization of Davenport—Schinzel seq’s



'3/ Why is it interesting?

Furedi '90
¢ Upper bound for the unit distance problem
Furedi & Hajnal '92

¢ Relation to Extremal Graph Theory
¢ Generalization of Davenport—Schinzel seq’s

Klazar '00
¢ Furedi—Hajnal Conj. = Stanley—Wilf Conj.



Y/ The Stanley—-Wilf conjecture
Conj. (Stanley & Wilf)

YV permutation 7t of |k|: 3 a constant c s.t.

“# of perm’s of [n] avoiding T" < c™.



Y/ The Stanley—-Wilf conjecture
Conj. (Stanley & Wilf)

YV permutation 7t of |k|: 3 a constant c s.t.

"4 of perm’s of [n] avoiding 7" < c™.

Cor.

The Stanley—Wilf conjecture is true.



2/ The Stanley—Wilf conjecture Il

Conj. (Stanley & Wilf)

YV permutation 7t of |k|: 3 a constant c s.t.

lim (“# of perm’s of n] avoiding 7")"/™
n— oo

= C.



2/ The Stanley—Wilf conjecture Il

Conj. (Stanley & Wilf)

YV permutation 7t of |k|: 3 a constant c s.t.

lim (“# of perm'’s of [n] avoiding 77" )1/™
mn— o0

2
The conj. is true with ¢ < 152" (%),

— C.



2/ The Stanley—Wilf conjecture Il

Conj. (Stanley & Wilf)

YV permutation 7t of |k|: 3 a constant c s.t.

lim (“# of perm'’s of [n] avoiding 77" )1/™
mn— o0

2
The conj. is true with ¢ < 152" (%),

Another Conj. | ¢ < (k—1)%.

— C.

(Arratia '99, still open)




2/ Some more consequences

¢ Affirmative answer to a conj. of

Alon—Friedgut ('00) on the max. length of
sparse word avoiding a permutation

¢ Characterization of 0/1-matrices P which
have at most exponentially many nxn
0/1-matrices avoiding P



Some more open problems (1)

A
(Fiiredi & Hajnal '92)

Characterize the matrices P with

f(n,P) = O(n).

(Marcus & Tardos)

Find minimally nonlinear patterns P
with more than four 1's.



23/ Some more open problems (2)

(Fiiredi & Hajnal '92)

G a bipartite graph
Pg the 0/1-matrix corresponding to G

U1 1 U1
V1

U PG — 0 wo
Vo 1 w3

u3 G



23/ Some more open problems (2)

(Fiiredi & Hajnal '92)

G a bipartite graph
Pg the 0/1-matrix corresponding to G

f(n,P) = O(Turan(n, G)logn)??

Turan(n, G) = max. # of edges in
an n-vert. graph avoiding G

w1 1 1 w1
U Vi PG =1 0 1 wo

Vo 1 0 w3
u3 G

V1 Vo



2/ Conclusion

¢ The Furedi—Hajnal Conj. has been solved.
¢ The Stanley—Wilf Conj. has been solved.
¢ Still problems are remaining.

¢ New progress on

Extremal 0/1-matrix theory
(Firedi & Hajnal '92, Tardos)

Extremal ordered graph theory
(Klazar '04, Brass, Karolyi & Valtr '03).

[End of the talk]



