The traveling salesman problem
with few inner points

Yoshio Okamoto*
(Joint work with Michael Hoffmann)

Mittagsseminar, April 6, 2004

* Supported by the Berlin-Ziirich Joint Graduate Program

i/ The 2D TSP

Given: finite set of points on R*
Find: a minimum-length tour

i/ The 2D TSP

Given: finite set of points on R?
Find: a minimum-length tour

Y/ Known facts about 2DTSP

® In general, it is NP-hard.
(Garey, Graham & Johnson '76
Papadimitriou '77)
¢ When the points are in convex position,
the problem is easy.

Y/ Known facts about 2DTSP

¢ In general, it is NP-hard.
(Garey, Graham & Johnson '76
Papadimitriou '77)
® When the points are in convex position,
the problem is easy.

J/ Motivation

The inner points make the problem
difficult.

Motivation

v

The inner points make the problem
difficult.

How many inner points can we have
in order to obtain a polynomial-time
algorithm?

‘\‘/ Result

We give two simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

& Second algorithm runs in polynomial time
when k = O(logn/loglogn).

Open problem: Improve the bound!

‘\‘/ Result

We give two simple algorithms.

n := the total number of points
k := the number of inner points

® First algorithm runs in polynomial time
when k = O(1).

& Second algorithm runs in polynomial time
when k = O(logn/loglogn).

Open problem: Improve the bound!

‘\‘/ Result

We give two simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

® Second algorithm runs in polynomial time
when k = O(logn/loglogn).

Open problem: Improve the bound!

‘\‘/ Result

We give two simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

& Second algorithm runs in polynomial time
when k = O(logn/loglogn).

Open problem: Improve the bound!

‘\‘/ Result

We give two simple algorithms.

n := the total number of points
k := the number of inner points

® First algorithm runs in polynomial time
when k = O(1).

& Second algorithm runs in polynomial time
when k = O(logn/loglogn).

Open problem: Improve the bound!

/ A useful fact

(Flood '56)

An optimal tour has no self-crossing.

Proof

Y/ Corollary

Corollary

An optimal tour visits the non-inner
points in a cyclic order.

vV

Corollary

Corollary

An optimal tour visits the non-inner
points in a cyclic order.

Proof

Suppose not.

Then 4 a “skip.”
Skipped points must
be visited later,
which causes a self-
crossing.

A contradiction.

{/ One inner point

Consider the case k = 1. (k := # of inner pts)
Inner point: d
Non-inner points: p1,P2,...,Pn_1

labeled according to a cyclic order

P7

Peé
P1

P5

P2

P3 b4

Y/ One inner point

of tours which “respect” the cycl. order =
n—1.

Choose the best one.

(N

Y/ First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order

(i) Compute the length of the tour;
(4) Choose the best one among them.

Y/ First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order

(i) Compute the length of the tour;
(4) Choose the best one among them.

Y/ First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order

(i) Compute the length of the tour;
(4) Choose the best one among them.

Y/ First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order

(i) Compute the length of the tour;
(4) Choose the best one among them.

Y/ First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order

(i) Compute the length of the tour;
(4) Choose the best one among them.

Y/ First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order

(i) Compute the length of the tour;
(4) Choose the best one among them.

Y/ Running time

There are k inner points.

& -+ of tours which “respect” the cycl. order

= O(kInk).

& They can be enumerated in O(1) time per
tour.

& The length of each tour can be computed in
O(n) time.

The running time = O(nlogn) +O(kIn**").
H,—/
convex hull

computation

When k is a constant, this i1s polynomial in n.

Y/ Running time

There are k inner points.

® -+ of tours which “respect” the cycl. order

= O(kInk).

& They can be enumerated in O(1) time per
tour.

& The length of each tour can be computed in
O(n) time.

The running time = O(nlogn) +O(kIn**").
E,—/
convex hull

computation

When k is a constant, this i1s polynomial in n.

Y/ Running time

There are k inner points.

& -+ of tours which “respect” the cycl. order

= O(kInk).

® They can be enumerated in O(1) time per
tour.

& The length of each tour can be computed in
O(n) time.

The running time = O(nlogn) +O(kIn**").
E,—/
convex hull

computation

When k is a constant, this i1s polynomial in n.

Y/ Running time

There are k inner points.

& -+ of tours which “respect” the cycl. order

= O(kInk).

& They can be enumerated in O(1) time per
tour.

® The length of each tour can be computed in
O(n) time.

The running time = O(nlogn) +O(kin**").
E,—/
convex hull

computation

When k is a constant, this i1s polynomial in n.

Y/ Running time

There are k inner points.

& -+ of tours which “respect” the cycl. order

= O(kInk).

& They can be enumerated in O(1) time per
tour.

& The length of each tour can be computed in
O(n) time.

The running time = O(nlogn) + O(kn**").
E,—/
convex hull

computation

When k is a constant, this i1s polynomial in n.

Y/ Running time

There are k inner points.

& -+ of tours which “respect” the cycl. order

= O(kInk).

& They can be enumerated in O(1) time per
tour.

& The length of each tour can be computed in
O(n) time.

The running time = O(nlogn) +O(kIn**").
E,—/
convex hull

computation

When k Is a constant, this i1s polynomial in .

"/ Result

We give two simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

¢ Second algorithm runs in polynomial time
when k = O(logn/loglogn).

Open problem: Improve the bound!

R/ Idea for the second algorithm

we already saw

An optimal tour respects
a cyclic order on the non-inner points.

R/ Idea for the second algorithm

An optimal tour respects
some linear order on the inner points.

R/ Idea for the second algorithm

Try all linear orders on the inner points.

R/ Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

R/ Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

R/ Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

R/ Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

R/ Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

R/ Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

Y

Example

P1

Ps5

P2

P3

Y/ Example

P2

Optimal tour among those which respect
the cyclic order and the order “1-2-3."

Example

P3

Optimal tour among those which respect
the cyclic order and the order “1-3-2."

Y/ Example
Pa

Ps5

g3 P3
h
J2
P1
P2

Optimal tour among those which respect
the cyclic order and the order “2-1-3."

Y/ Example
Pa

Ps5

d3 P3
h
J2
P1
P2

Optimal tour among those which respect
the cyclic order and the order “2-3-1."

Y/ Example

Ps5

P2

Optimal tour among those which respect
the cyclic order and the order "3-1-2."

Y/ Example
Pa

Ps5

d3 P3
h
J2
P1
P2

Optimal tour among those which respect
the cyclic order and the order "3-2-1."

Choose the best one

Y/ Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.
Not yet clear: How to do Step (3i)77

Y/ Dynamic programming

P1,...,Pn—kx a cycl. order on the non-inner pts
di1, ..., dk a linear order on the inner pts
F(i,j) := the length of a shortest path

from py to p;

via P1,...,Pi and di1,...,d;
which respects these two orders

g1
d>2

P2 >o/.]95

P3 P4 (i=5,j=2)

P1

v Dynamic programming

P1,...,Pn—kx a cycl. order on the non-inner pts
di,...,dk a linear order on the inner pts
F(i,j) ;== the length of a shortest path

from py to g;

via P1,...,Pi and di1,...,d;
which respects these two orders

g1
d>2

P2 > Ps5

P3 P4 (i=5,j=2)

P1

12/ Main recurrence

It holds that

F(i4+1,j) = minimum of
F(L):) + d(pi, pi+1) and
F(1>1) d(qj>pi—|—1)

q1 d1
P \/Zqz)//m P \45%
pZ p5 pz p5
p3 p4 p3 p4

(i=5,j=2)

12/ Main recurrence

It holds that

F(i+1,5) = minimum of
F(i,j) + d(pi,pi+1) and
F(i,3) + d(d;, pis1)-
F(1,j+1) = minimum of
F(i,j) + d(pi, dj+1) and
F(i,j) + d(g;, dj4+1)-

2/ Dynamic programming

& By the dynamic programming technique,
F(n—k, k) and F(n—k, k) can be
computed in O(kn) time.

¢ The length of a shortest tour
which respects these two orders is

the minimum of
F(n—k,k) + d(pn—x,P1) and
Fhl_k)k) Bl d(qk>p1)-

2/ Dynamic programming

¢ By the dynamic programming technique,
F(n—k, k) and F(n—k, k) can be
computed in O(kn) time.

® The length of a shortest tour
which respects these two orders is

the minimum of
F(n—k, k) + d(pn—x,pP1) and
F(Tl—k,]ﬁ) il d(qk’p1)

2/ Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

What remains: the analysis of the running time

2/ Running time

There are k inner points.

& + of linear orders on k points = k!.

& They can be enumerated in O(1) time per
order.

¢ The length of an optimal tour which
respects the two orders can be computed in

O(kn) time.
The running time = O(nlogn) +0O(k!kn).

. 4
V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

2/ Running time

There are k inner points.

& + of linear orders on k points = k!.

& They can be enumerated in O(1) time per
order.

¢ The length of an optimal tour which
respects the two orders can be computed in

O(kn) time.
The running time = O(nlogn) +0O(k!kn).

. 4
V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

2/ Running time

There are k inner points.

& + of linear orders on k points = k!.

® They can be enumerated in O(1) time per
order.

¢ The length of an optimal tour which
respects the two orders can be computed in

O(kn) time.
The running time = O(nlogn) +0O(k!kn).

. 4
V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

2/ Running time

There are k inner points.

& + of linear orders on k points = k!.

& They can be enumerated in O(1) time per
order.

® The length of an optimal tour which
respects the two orders can be computed in

O(kn) time.
The running time = O(nlogn) +0O(k!kn).

o 4
V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

2/ Running time

There are k inner points.

& + of linear orders on k points = k!.

& They can be enumerated in O(1) time per
order.

¢ The length of an optimal tour which
respects the two orders can be computed in

O(kn) time.
The running time = O(nlogn) 4+ O(k!kn).

G 4
V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

2/ Running time

There are k inner points.

& + of linear orders on k points = k!.

& They can be enumerated in O(1) time per
order.

¢ The length of an optimal tour which
respects the two orders can be computed in

O(kn) time.
The running time = O(nlogn) +0O(k!kn).

. 4
V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

3/ Summary

We gave two simple algorithms.

n := the total number of points
k := the number of inner points

¢ First algorithm runs in O(k!n**1) time
which is poly. when k = O(1).

& Second algorithm runs in O(k!kn) time
which is poly. when k = O(logn/loglogn).

Open problem: Improve the bound!

V

Related work

Thm

(Deineko, van Dal & Rote '96)

The convex-hull-and-line TSP can be
solved in O(kn) time

Our work <

/

\

deals with the most general case.
still runs In linear time Iin .

2/ Related work

Thm (Deineko & Woeginger '96)

The convex-hull-and-£-line TSP can be
solved in O(f(k)n?) time for some fn f.

/

deals with the most general case.
still runs In linear time Iin .

\

Our work <

3/ Variations

The same strategy works for other problems.

¢ The prize-collecting TSP
® The partial TSP

The 2D versions of these problems
with kK inner points
can be solved in polynomial time

when k = O(logn/loglogn).

2{’/ General framework

Many problems can be solved in poly time
when some parameters are bounded.

& Graph optimization problems

bounded treewidth
bounded genus

2{"/ General framework

Many problems can be solved in poly time
when some parameters are bounded.

& Graph optimization problems

bounded treewidth
bounded genus

¢ Geometric optimization problems in 2D
bounded number of inner points

2{"/ General framework

Many problems can be solved in poly time
when some parameters are bounded.

& Graph optimization problems

bounded treewidth
bounded genus

¢ Geometric optimization problems in 2D

bounded number of inner points
L1

