
The traveling salesman problem
with few inner points

Yoshio Okamoto∗

(Joint work with Michael Hoffmann)

Mittagsseminar, April 6, 2004

∗ Supported by the Berlin-Zürich Joint Graduate Program

1
p

() The 2DTSP

Given: finite set of points on IR2

Find: a minimum-length tour

1

1
p

() The 2DTSP

Given: finite set of points on IR2

Find: a minimum-length tour

1

2
p

() Known facts about 2DTSP

�� In general, it is NP-hard.
(Garey, Graham & Johnson ’76

Papadimitriou ’77)

�� When the points are in convex position,
the problem is easy.

2

2
p

() Known facts about 2DTSP

�� In general, it is NP-hard.
(Garey, Graham & Johnson ’76

Papadimitriou ’77)

�� When the points are in convex position,
the problem is easy.

2

3
p

() Motivation

. ObservationObservation

The inner points make the problem
difficult.

3

3
p

() Motivation

. ObservationObservation

The inner points make the problem
difficult.

. MotivationMotivation

How many inner points can we have
in order to obtain a polynomial-time
algorithm?

3

4
p

() Result

. ResultResult

We give two simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

Open problem: Improve the bound!

4

4
p

() Result

. ResultResult

We give two simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

Open problem: Improve the bound!

4

4
p

() Result

. ResultResult

We give two simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

Open problem: Improve the bound!

4

4
p

() Result

. ResultResult

We give two simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

Open problem: Improve the bound!

4

4
p

() Result

. ResultResult

We give two simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

Open problem: Improve the bound!

4

5
p

() A useful fact

. FactFact (Flood ’56)

An optimal tour has no self-crossing.

. ProofProof

5

6
p

() Corollary

. CorollaryCorollary

An optimal tour visits the non-inner
points in a cyclic order.

6

6
p

() Corollary

. CorollaryCorollary

An optimal tour visits the non-inner
points in a cyclic order.

. ProofProof

Suppose not.
Then ∃ a “skip.”
Skipped points must
be visited later,
which causes a self-
crossing.
A contradiction.

6

7
p

() One inner point

Consider the case k = 1. (k := # of inner pts)

Inner point: q
Non-inner points: p1, p2, . . . , pn−1

labeled according to a cyclic order

p3

p7

q p5

p4

p2

p1
p6

7

8
p

() One inner point

of tours which “respect” the cycl. order =
n−1.

Choose the best one.
8

9
p

() First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order
(i) Compute the length of the tour;

(4) Choose the best one among them.

9

9
p

() First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order
(i) Compute the length of the tour;

(4) Choose the best one among them.

9

9
p

() First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order
(i) Compute the length of the tour;

(4) Choose the best one among them.

9

9
p

() First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order
(i) Compute the length of the tour;

(4) Choose the best one among them.

9

9
p

() First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order
(i) Compute the length of the tour;

(4) Choose the best one among them.

9

9
p

() First algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic
order
(i) Compute the length of the tour;

(4) Choose the best one among them.

9

10
p

() Running time

There are k inner points.

�� # of tours which “respect” the cycl. order
= O(k!nk).

�� They can be enumerated in O(1) time per
tour.

�� The length of each tour can be computed in
O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.
10

10
p

() Running time

There are k inner points.

�� # of tours which “respect” the cycl. order
= O(k!nk).

�� They can be enumerated in O(1) time per
tour.

�� The length of each tour can be computed in
O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.
10

10
p

() Running time

There are k inner points.

�� # of tours which “respect” the cycl. order
= O(k!nk).

�� They can be enumerated in O(1) time per
tour.

�� The length of each tour can be computed in
O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.
10

10
p

() Running time

There are k inner points.

�� # of tours which “respect” the cycl. order
= O(k!nk).

�� They can be enumerated in O(1) time per
tour.

�� The length of each tour can be computed in
O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.
10

10
p

() Running time

There are k inner points.

�� # of tours which “respect” the cycl. order
= O(k!nk).

�� They can be enumerated in O(1) time per
tour.

�� The length of each tour can be computed in
O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+ O(k!nk+1).

When k is a constant, this is polynomial in n.
10

10
p

() Running time

There are k inner points.

�� # of tours which “respect” the cycl. order
= O(k!nk).

�� They can be enumerated in O(1) time per
tour.

�� The length of each tour can be computed in
O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.
10

11
p

() Result

. ResultResult

We give two simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

Open problem: Improve the bound!

11

12
p

() Idea for the second algorithm

. FactFact we already saw

An optimal tour respects
a cyclic order on the non-inner points.

12

12
p

() Idea for the second algorithm

. Another factAnother fact

An optimal tour respects
some linear order on the inner points.

12

12
p

() Idea for the second algorithm

. IdeaIdea

Try all linear orders on the inner points.

12

13
p

() Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

13

13
p

() Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

13

13
p

() Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

13

13
p

() Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

13

13
p

() Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

13

13
p

() Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

13

14
p

() Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “1–2–3.”

14

14
p

() Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “1–2–3.”

14

14
p

() Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “1–3–2.”

14

14
p

() Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “2–1–3.”

14

14
p

() Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “2–3–1.”

14

14
p

() Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “3–1–2.”

14

14
p

() Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “3–2–1.”

14

15
p

() Choose the best one

15

16
p

() Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

Not yet clear: How to do Step (3i)??

16

17
p

() Dynamic programming

p1, . . . , pn−k a cycl. order on the non-inner pts
q1, . . . , qk a linear order on the inner pts
F(i, j) := the length of a shortest path

from p1 to pi
via p1, . . . , pi and q1, . . . , qj
which respects these two orders

q2

q1

p5

p4p3

p2

p1

(i = 5, j = 2)
17

18
p

() Dynamic programming

p1, . . . , pn−k a cycl. order on the non-inner pts
q1, . . . , qk a linear order on the inner pts
F(i, j) := the length of a shortest path

from p1 to qj
via p1, . . . , pi and q1, . . . , qj
which respects these two orders

q2

q1

p5

p4p3

p2

p1

(i = 5, j = 2)
18

19
p

() Main recurrence

It holds that

F(i+1, j) = minimum of
F(i, j) + d(pi, pi+1) and
F(i, j) + d(qj, pi+1).

p6 p6

p3 p4

p5

q1

q2 p1

p2

p3 p4

p5

q1

q2

p2

p1

(i = 5, j = 2)

19

19
p

() Main recurrence

It holds that

F(i+1, j) = minimum of
F(i, j) + d(pi, pi+1) and
F(i, j) + d(qj, pi+1).

F(i, j+1) = minimum of
F(i, j) + d(pi, qj+1) and
F(i, j) + d(qj, qj+1).

19

20
p

() Dynamic programming

�� By the dynamic programming technique,

F(n−k, k) and F(n−k, k) can be
computed in O(kn) time.

�� The length of a shortest tour
which respects these two orders is

the minimum of
F(n−k, k) + d(pn−k, p1) and
F(n−k, k) + d(qk, p1).

20

20
p

() Dynamic programming

�� By the dynamic programming technique,

F(n−k, k) and F(n−k, k) can be
computed in O(kn) time.

�� The length of a shortest tour
which respects these two orders is

the minimum of
F(n−k, k) + d(pn−k, p1) and
F(n−k, k) + d(qk, p1).

20

21
p

() Outline of the second algorithm

(1) Distinguish the inner points and the
non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(i) Compute an optimal tour among those
which respect these two orders;

(4) Choose the best one among them.

What remains: the analysis of the running time

21

22
p

() Running time

There are k inner points.

�� # of linear orders on k points = k!.
�� They can be enumerated in O(1) time per

order.
�� The length of an optimal tour which

respects the two orders can be computed in
O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!kn).

When k = O(logn/ log logn), this is poly. in n.
22

22
p

() Running time

There are k inner points.

�� # of linear orders on k points = k!.
�� They can be enumerated in O(1) time per

order.
�� The length of an optimal tour which

respects the two orders can be computed in
O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!kn).

When k = O(logn/ log logn), this is poly. in n.
22

22
p

() Running time

There are k inner points.

�� # of linear orders on k points = k!.
�� They can be enumerated in O(1) time per

order.
�� The length of an optimal tour which

respects the two orders can be computed in
O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!kn).

When k = O(logn/ log logn), this is poly. in n.
22

22
p

() Running time

There are k inner points.

�� # of linear orders on k points = k!.
�� They can be enumerated in O(1) time per

order.
�� The length of an optimal tour which

respects the two orders can be computed in
O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!kn).

When k = O(logn/ log logn), this is poly. in n.
22

22
p

() Running time

There are k inner points.

�� # of linear orders on k points = k!.
�� They can be enumerated in O(1) time per

order.
�� The length of an optimal tour which

respects the two orders can be computed in
O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+ O(k!kn).

When k = O(logn/ log logn), this is poly. in n.
22

22
p

() Running time

There are k inner points.

�� # of linear orders on k points = k!.
�� They can be enumerated in O(1) time per

order.
�� The length of an optimal tour which

respects the two orders can be computed in
O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!kn).

When k = O(logn/ log logn), this is poly. in n.
22

23
p

() Summary

. ResultResult

We gave two simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in O(k!nk+1) time
which is poly. when k = O(1).

�� Second algorithm runs in O(k!kn) time
which is poly. when k = O(logn/ log logn).

Open problem: Improve the bound!

23

24
p

() Related work

. ThmThm (Dĕıneko, van Dal & Rote ’96)

The convex-hull-and-line TSP can be
solved in O(kn) time

Our work

{
deals with the most general case.
still runs in linear time in n.

24

24
p

() Related work

. ThmThm (Dĕıneko & Woeginger ’96)

The convex-hull-and-`-line TSP can be
solved in O(f(k)n2) time for some fn f.

Our work

{
deals with the most general case.
still runs in linear time in n.

24

25
p

() Variations

The same strategy works for other problems.

�� The prize-collecting TSP
�� The partial TSP

. ResultResult

The 2D versions of these problems
with k inner points
can be solved in polynomial time
when k = O(logn/ log logn).

25

26
p

() General framework

Many problems can be solved in poly time
when some parameters are bounded.

�� Graph optimization problems
•• bounded treewidth
•• bounded genus
•• ...

Geometric optimization problems in 2D
bounded number of inner points
...?

26

26
p

() General framework

Many problems can be solved in poly time
when some parameters are bounded.

�� Graph optimization problems
•• bounded treewidth
•• bounded genus
•• ...

�� Geometric optimization problems in 2D
•• bounded number of inner points

...?

26

26
p

() General framework

Many problems can be solved in poly time
when some parameters are bounded.

�� Graph optimization problems
•• bounded treewidth
•• bounded genus
•• ...

�� Geometric optimization problems in 2D
•• bounded number of inner points
•• ...?

26

