

The Minimum Weight Triangulation Problem with Few Inner Points

Michael Hoffmann ETH Zurich Yoshio Okamoto

ETH Zurich

September 16, 2004

International Workshop on Exact and Parameterized Computation (IWPEC) Radisson SAS Royal Hotel, Bergen, Norway

S a set of points in the plane, no three points lying on a line A triangulation of S:

S a set of points in the plane, no three points lying on a line A triangulation of S:

S a set of points in the plane, no three points lying on a line A triangulation of S:

S a set of points in the plane, no three points lying on a line A **triangulation** of S:

a subdivision of conv(S) into triangles s.t. edges: straight line segments connecting points from S and triangles: with no point from S in their interiors

Minimum weight triangulation

S a set of points in the plane, no three points lying on a line **Weight** of a triangulation of S:

sum of the lengths of the edges

Minimum weight triangulation

S a set of points in the plane, no three points lying on a line **Weight** of a triangulation of S:

sum of the lengths of the edges

Minimum weight triangulation: a triangulation with minimum weight

The minimum weight triangulation problem

In general, not known to be

- solvable in polynomial time, or
- NP-hard.

• If the points are in convex position, can be solved in $O(n^3)$ time

n the number of points

Distance-from-Triviality approach

Guo, Hüffner & Niedermeier (prev. talk)

"Distance from Triviality" = Number of inner points

Cf. Deĭneko, Hoffmann, Okamoto & Woeginger '04: TSP with few inner points

Develop an algorithm to solve the minimum weight triangulation problem in $O(6^k n^5 \log n)$ time.

- n the total number of points
- k the number of inner points

Develop an algorithm to solve the minimum weight triangulation problem in $O(6^k n^5 \log n)$ time.

n the total number of pointsk the number of inner points

Consequences:

The minimum weight triangulation problem

- is fixed parameter tractable (FPT) w.r.t. the number of inner points.
- can be solved in **polynomial time** if $k = O(\log n)$.

Divide & Conquer and Dynamic Programming

Overview of the rest of my talk:

- Basic property
- Decompositions
- Dynamic Programming

- Obs 1 One of the following two happens.
- \blacklozenge p forms a triangle together with its neighbors on the bd. $\Rightarrow \exists$ an x-monotone inner path from p.

- Obs 1 One of the following two happens.
- \blacklozenge p forms a triangle together with its neighbors on the bd. $\Rightarrow \exists$ an x-monotone inner path from p.

- Obs 1 One of the following two happens.
- \blacklozenge p forms a triangle together with its neighbors on the bd. \blacklozenge \exists an x-monotone inner path from p.

- Obs 1 One of the following two happens.
- \blacklozenge p forms a triangle together with its neighbors on the bd. \blacklozenge \exists an x-monotone inner path from p.

- Obs 1 One of the following two happens.
- \blacklozenge p forms a triangle together with its neighbors on the bd. \blacklozenge \exists an x-monotone inner path from p.

- Obs 1 One of the following two happens.
- \blacklozenge p forms a triangle together with its neighbors on the bd. \blacklozenge \exists an x-monotone inner path from p.

- Obs 1 One of the following two happens.
- \blacklozenge p forms a triangle together with its neighbors on the bd. \blacklozenge \exists an x-monotone inner path from p.

- Obs 1 One of the following two happens.
- \blacklozenge p forms a triangle together with its neighbors on the bd. \blacklozenge \exists an x-monotone inner path from p.

- Obs 1 One of the following two happens.
- \blacklozenge p forms a triangle together with its neighbors on the bd. \blacklozenge \exists an x-monotone inner path from p.

Strategy

S a point set, \mathcal{T} a triangulation of S, p the leftmost pt of S

Obs 1 One of the following two happens.

 \blacklozenge p forms a triangle together with its neighbors on the bd. \blacklozenge \exists an x-monotone inner path from p.

In particular, this holds for min weight triangulations. Try all possible cases!!

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Try all possible cases!!

A min weight triangulation fits at least one of these cases. # possible cases $\leq 1 + 2^k n$.

Look at one of the cases...

Divide into two pieces!!

⇒ Recursively solve on the smaller polygons!!

 \Rightarrow Recursively solve on the smaller polygons!!

Two Problems:

Smaller polygons can be non-convex.

Top-down recursion will not give FPT.

Two Problems:

Smaller polygons can be non-convex.

Top-down recursion will not give FPT.

Two Problems:

Smaller polygons can be non-convex. Generalize to simple polygons!!

♦ Top-down recursion will not give FPT.

P a simple polygon

P a simple polygon, S a point set inside P,

P a simple polygon, S a point set inside P, T a triangulation of (P,S), p the leftmost point of P

P a simple polygon, S a point set inside P, \mathcal{T} a triangulation of (P, S), p the leftmost point of P

- Obs 1' One of the following two happens.
- \blacklozenge p forms a triangle together with its neighbors on the bd. $\Rightarrow \exists$ an x-monotone inner path from p.

Two Problems:

Smaller polygons can be non-convex. Generalize to simple polygons!!

♦ Top-down recursion will not give FPT.

Two Problems:

Smaller polygons can be non-convex. Generalize to simple polygons!!

Top-down recursion will not give FPT. Solve in a bottom-up manner by DP!!

(1) Enumerate all small polygons appearing in the subdivisions.

(2) Determine which polygons arise from which polygons

(3) Solve the recursion in a bottom-up manner by DP.

Two Problems:

Smaller polygons can be non-convex. Generalize to simple polygons!!

Top-down recursion will not give FPT. Solve in a bottom-up manner by DP!!

Two Problems:

Smaller polygons can be non-convex. Generalize to simple polygons!!

Top-down recursion will not give FPT.
 Solve in a bottom-up manner by DP!!
 Need to control the types of polygons appearing in subdivisions.

Introduce three types of polygons ...

Take an *x*-monotone inner path...

Type-1 polygons

A type-1 polygon:

the boundary consists of one x-monotone inner path of the orig polygon and one boundary chain of the orig polygon.

Type-1 polygons

A type-1 polygon:

the boundary consists of one x-monotone inner path of the orig polygon and one boundary chain of the orig polygon.

Type-1 polygons

A type-1 polygon:

the boundary consists of one x-monotone inner path of the orig polygon and one boundary chain of the orig polygon.

Subdivide this way

Type-2 polygons

A type-2 polygon:

the boundary consists of two x-monotone inner paths of the orig polygon and one boundary chain of the orig polygon.

Type-2 polygons

A type-2 polygon:

the boundary consists of two x-monotone inner paths of the orig polygon and one boundary chain of the orig polygon.

Look at this polygon

Take this inner path

Type-3 polygons

A type-3 polygon:

the boundary consists of two x-monotone inner paths of the orig polygon.

By subdividing polygons carefully, we can show that Small polygons appearing in the subdivisions are limited to type-1, 2, 3 polygons.

(1) Enumerate all small polygons appearing in the subdivisions.

(2) Determine which polygons arise from which polygons

(3) Solve the recursion in a bottom-up manner by DP.

(1) Enumerate all small polygons appearing in the subdivisions.

- # of small polygons we enumerate = $O(3^k n^3)$.
- Can be done in $O(3^k n^4 \log n)$ time.
- (2) Determine which polygons arise from which polygons
- (3) Solve the recursion in a bottom-up manner by DP.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

(1) Enumerate all small polygons appearing in the subdivisions.

- # of small polygons we enumerate = $O(3^k n^3)$.
- Can be done in $O(3^k n^4 \log n)$ time.
- (2) Determine which polygons arise from which polygons
 - Can be done in $O(6^k n^5 \log n)$ time.
- (3) Solve the recursion in a bottom-up manner by DP.

(1) Enumerate all small polygons appearing in the subdivisions.

- # of small polygons we enumerate = $O(3^k n^3)$.
- Can be done in $O(3^k n^4 \log n)$ time.
- (2) Determine which polygons arise from which polygons

• Can be done in $O(6^k n^5 \log n)$ time.

(3) Solve the recursion in a bottom-up manner by DP.

• Can be done in $O(6^k n^4)$ time.

(1) Enumerate all small polygons appearing in the subdivisions.

- # of small polygons we enumerate = $O(3^k n^3)$.
- Can be done in $O(3^k n^4 \log n)$ time.
- (2) Determine which polygons arise from which polygons

• Can be done in $O(6^k n^5 \log n)$ time.

(3) Solve the recursion in a bottom-up manner by DP.

• Can be done in $O(6^k n^4)$ time.

In total: runs in $O(6^k n^5 \log n)$ time.

The minimum weight triangulation problem can be solved in $O(6^k n^5 \log n)$ time.

- n the total number of points
- k the number of inner points

Consequences:

The minimum weight triangulation problem

is fixed parameter tractable (FPT) w.r.t. the number of inner points.
 can be solved in polynomial time

if $\mathbf{k} = \mathbf{O}(\log n)$.

The maximum weight triangulation problem can be solved in $O(6^k n^5 \log n)$ time.

- n the total number of points
- k the number of inner points

Consequences:

The maximum weight triangulation problem

is fixed parameter tractable (FPT) w.r.t. the number of inner points.

• can be solved in **polynomial time** if $k = O(\log n)$.

Not known to be NP-hard

Approximation algorithms

- O(1)-approximation (Levcopoulos & Krznaric '98)
- **Exact algorithms** without run-time analysis
 - Integer prog. (Kyoda, Imai, Takeuchi & Tajima '97)
 - "Paths of a triangulation" (Aichholzer '99)

Parameterization

Nested convex hulls
 (Anagnetic convex hulls)

(Anagnostou & Corneil '93)

k the number of "nests" **A min weight triangulation can be found in** $O(n^{3k+1})$ time. (Anagnostou & Corneil '93)

Thank you

Tusen takk.

