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Two basic facts

The minimum weight triangulation problem

�� In general, not known to be
•• solvable in polynomial time, or
•• NP-hard.

�� If the points are in convex position,
can be solved in O(n3) time

n the number of points



Distance-from-Triviality approach

Guo, Hüffner & Niedermeier (prev. talk)

“Distance from Triviality” = Number of inner points

The less inner points ←→ The easier instance

Cf. Dĕıneko, Hoffmann, Okamoto & Woeginger ’04:

TSP with few inner points



Result

Develop an algorithm to solve the minimum
weight triangulation problem in O(6kn5 log n)
time.

n the total number of points
k the number of inner points

Consequences:

The minimum weight triangulation problem

is fixed parameter tractable (FPT)
w.r.t. the number of inner points.

can be solved in polynomial time
if k = O(log n).
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Approach

Divide & Conquer and Dynamic Programming

Overview of the rest of my talk:

�� Basic property

�� Decompositions

�� Dynamic Programming



Basic Property

S a point set, T a triangulation of S, p the leftmost pt of S

. Obs 1Obs 1 One of the following two happens.

�� p forms a triangle together with its neighbors on the bd.

�� ∃ an x-monotone inner path from p.
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Strategy

S a point set, T a triangulation of S, p the leftmost pt of S

. Obs 1Obs 1 One of the following two happens.

�� p forms a triangle together with its neighbors on the bd.

�� ∃ an x-monotone inner path from p.

In particular, this holds for min weight triangulations.

⇓
Try all possible cases!!



Given a point set...



In a triangulation, this happens?
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In a triangulation, this happens?



Try all possible cases!!

A min weight triangulation fits at least one of these cases.

# possible cases ≤ 1+ 2kn.



Look at one of the cases...



Divide into two pieces!!

⇒ Recursively solve on the smaller polygons!!

Two Problems:

Smaller polygons can be non-convex.

Top-down recursion will not give FPT.
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Obs 1 also holds for simple polygons

P a simple polygon, S a point set inside P,
T a triangulation of (P, S), p the leftmost point of P

. Obs 1’Obs 1’ One of the following two happens.

p forms a triangle together with its neighbors on the bd.

∃ an x-monotone inner path from p.
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Outline of the algorithm

(1) Enumerate all small polygons appearing in the
subdivisions.

# of small polygons we enumerate = O(3kn3).

Can be done in O(3kn4 logn) time.

(2) Determine which polygons arise from which
polygons

Can be done in O(6kn5 logn) time.

(3) Solve the recursion in a bottom-up manner by DP.

Can be done in O(6kn4) time.

In total: runs in O(6kn5 logn) time.
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Two problems to resolve

Two Problems:

�� Smaller polygons can be non-convex.
Generalize to simple polygons!!

�� Top-down recursion will not give FPT.
Solve in a bottom-up manner by DP!!
Need to control the types of polygons appearing in
subdivisions.

Introduce three types of polygons ...



Again, given a point set...



Take an x-monotone inner path...



Then, subdivide



Type-1 polygons

A type-1 polygon:

the boundary consists of
one x-monotone inner path of the orig polygon and
one boundary chain of the orig polygon.
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Take this polygon

A type-2 polygon:

the boundary consists of
two x-monotone inner paths of the orig polygon and
one boundary chain of the orig polygon.



Subdivide this way

A type-2 polygon:

the boundary consists of
two x-monotone inner paths of the orig polygon and
one boundary chain of the orig polygon.



Look at this part
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Look at this polygon

A type-3 polygon:
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one boundary chain of the orig polygon.
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the boundary consists of
two x-monotone inner paths of the orig polygon.
one boundary chain of the orig polygon.



Then subdivide

A type-3 polygon:

the boundary consists of
two x-monotone inner paths of the orig polygon.
one boundary chain of the orig polygon.



Type-3 polygons

A type-3 polygon:

the boundary consists of
two x-monotone inner paths of the orig polygon.
one boundary chain of the orig polygon.



Important lemma

By subdividing polygons carefully, we can show that

Small polygons appearing in the subdivisions are
limited to type-1, 2, 3 polygons.
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Result (again)

The minimum weight triangulation problem can
be solved in O(6kn5 log n) time.
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k the number of inner points

Consequences:

The minimum weight triangulation problem

�� is fixed parameter tractable (FPT)
w.r.t. the number of inner points.

�� can be solved in polynomial time
if k = O(log n).



Variation

The maximum weight triangulation problem can
be solved in O(6kn5 log n) time.

n the total number of points
k the number of inner points

Consequences:

The maximum weight triangulation problem

�� is fixed parameter tractable (FPT)
w.r.t. the number of inner points.

�� can be solved in polynomial time
if k = O(log n).



Related past work

�� Not known to be NP-hard
�� Approximation algorithms
•• O(1)-approximation (Levcopoulos & Krznaric ’98)

�� Exact algorithms without run-time analysis

•• Integer prog. (Kyoda, Imai, Takeuchi & Tajima ’97)
•• “Paths of a triangulation” (Aichholzer ’99)

�� Parameterization
•• Nested convex hulls (Anagnostou & Corneil ’93)



Nested convex hulls

k the number of “nests”
A min weight triangulation can be found in
O(n3k+1) time. (Anagnostou & Corneil ’93)



Thank you

Tusen takk.


