

The Traveling Salesman Problem with Few Inner Points

Vladimir Deĭneko	U Warwick	UK
Michael Hoffmann	ETH Zurich	СН
Yoshio Okamoto	ETH Zurich	СН
Gerhard Woeginger	TU Eindhoven	NL

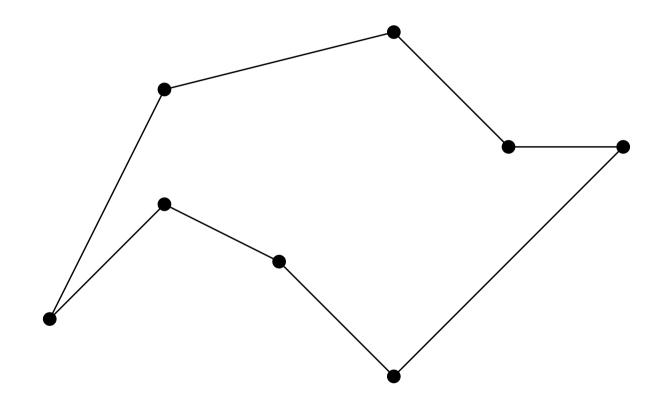
August 18, 2004 @ COCOON 2004, Jeju Island, Republic of Korea

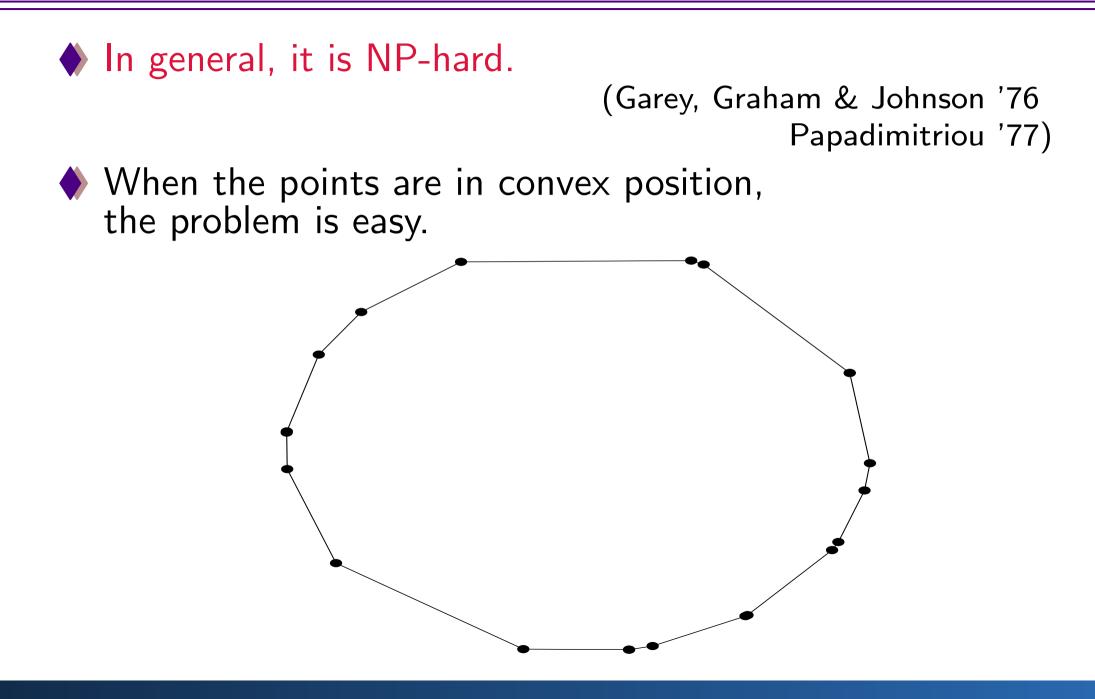
ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich The 2DTSP

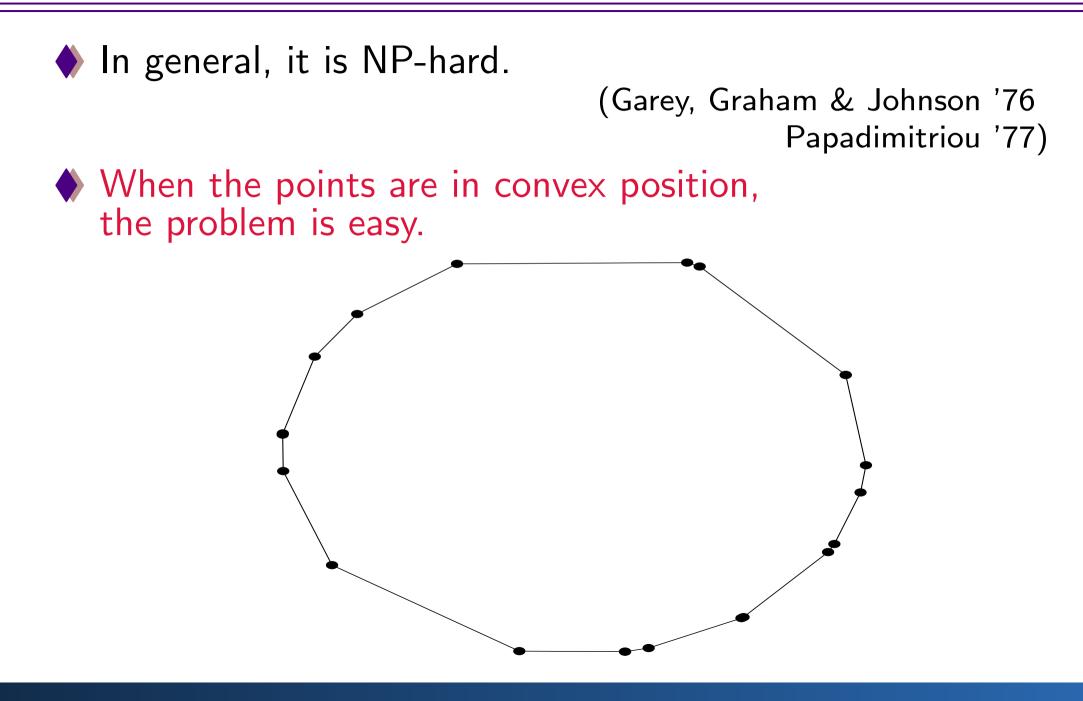
Given: finite set of points on \mathbb{IR}^2 Find: a minimum-length tour

The 2DTSP

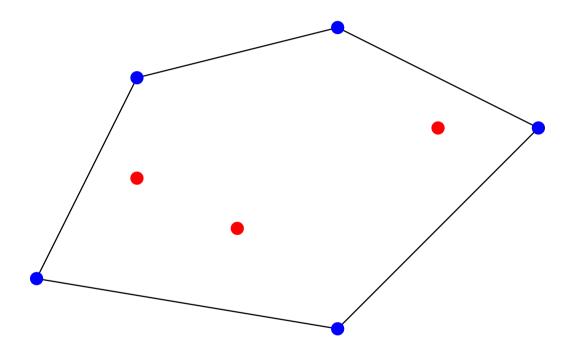
Given: finite set of points on ${\rm I\!R}^2$ Find: a minimum-length tour







The **inner points** make the problem difficult.



The **inner points** make the problem difficult.

How many inner points can we have in order to obtain a polynomial-time algorithm?

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.
- Third algorithm runs in polynomial time when $k = O(\log n)$.

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.
- Third algorithm runs in polynomial time when $k = O(\log n)$.

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.
- Third algorithm runs in polynomial time when $k = O(\log n)$.

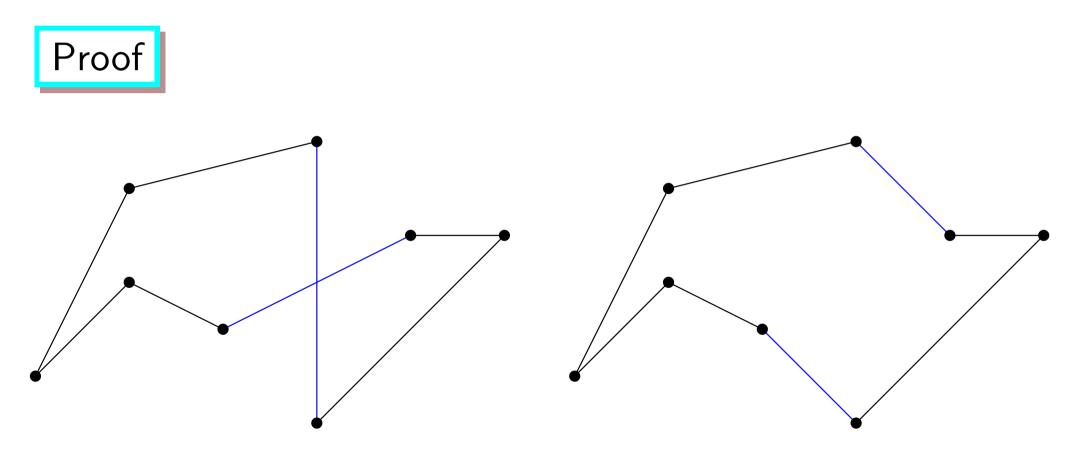
- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.
- Third algorithm runs in polynomial time when $k = O(\log n)$.

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.
- Third algorithm runs in polynomial time when $k = O(\log n)$.

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.
- Third algorithm runs in polynomial time when $k = O(\log n)$.

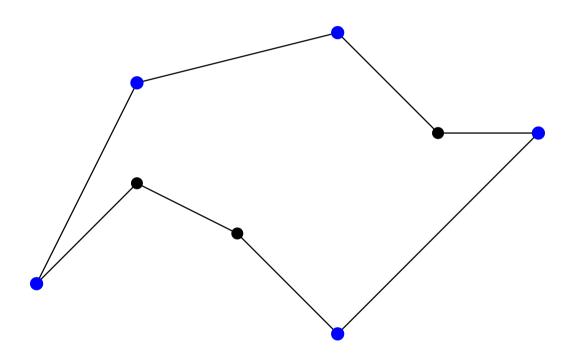
(Flood '56)

An optimal tour has no self-crossing.



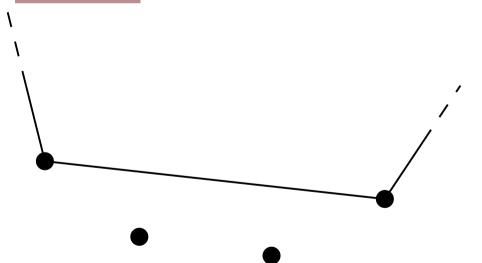
Corollary

An optimal tour visits the non-inner points in a cyclic order.

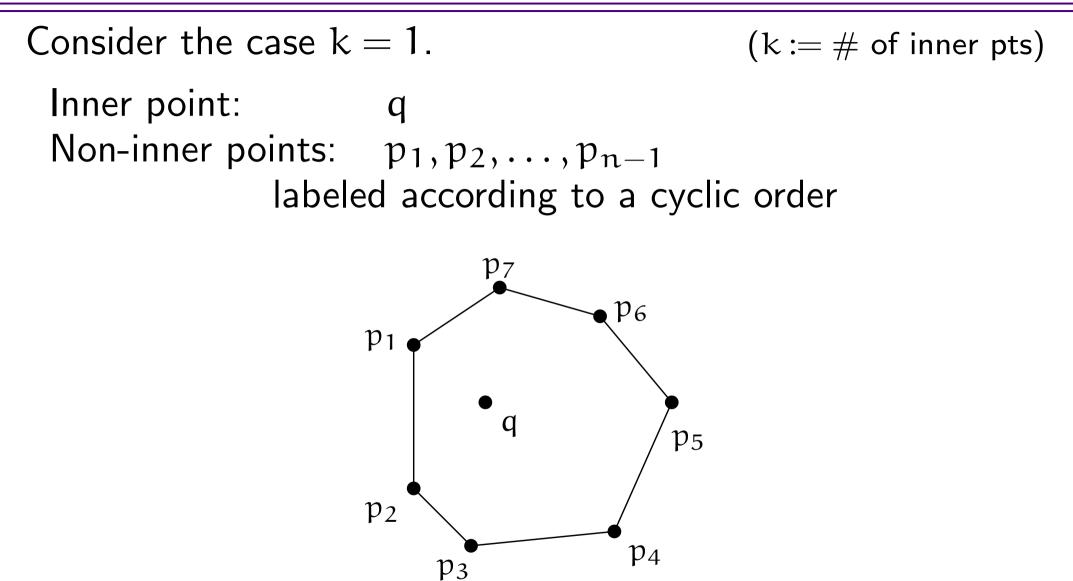


Corollary

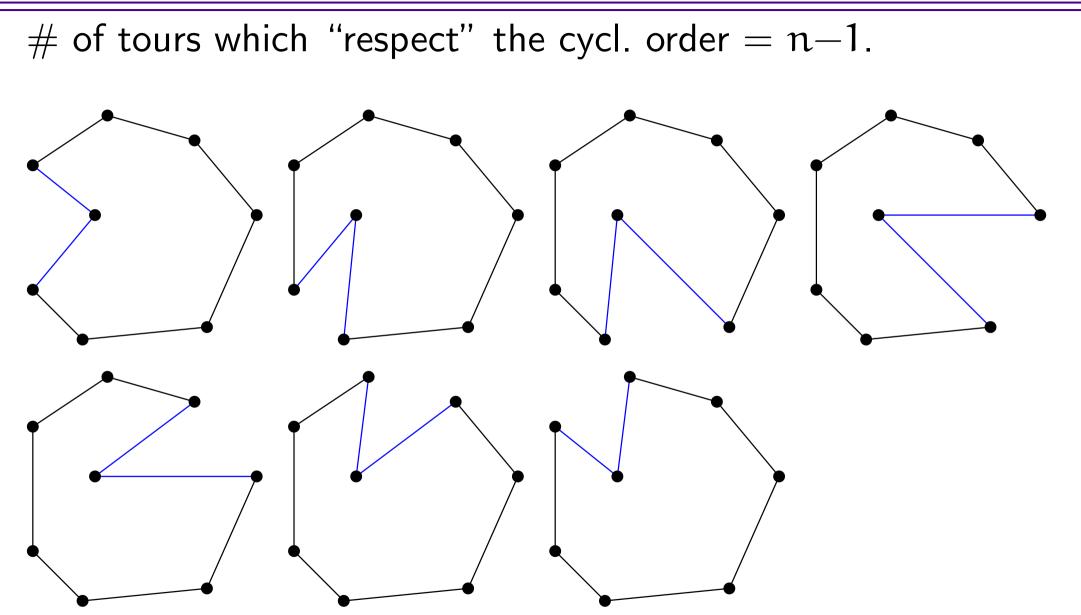
An optimal tour visits the non-inner points in a cyclic order.



Suppose not. Then ∃ a "skip." Skipped points must be visited later, which causes a self-crossing. A contradiction. Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **One inner point**



One inner point



Choose the best one.

- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order
 - (a) Compute the length of the tour;
- (4) Choose the best one among them.

- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order
 - (a) Compute the length of the tour;
- (4) Choose the best one among them.

- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order
 - (a) Compute the length of the tour;
- (4) Choose the best one among them.

- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order
 - (a) Compute the length of the tour;
- (4) Choose the best one among them.

- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order
 - (a) Compute the length of the tour;
- (4) Choose the best one among them.

- (2) Fix a cyclic order on the non-inner points;
- (3) For each tour which respects the cyclic order
 - (a) Compute the length of the tour;
- (4) Choose the best one among them.

- # of tours which "respect" the cycl. order = $O(k!n^k)$.
- \blacklozenge They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.
- The running time = $O(n \log n) + O(k!n^{k+1})$.

convex hull computation

 \bigstar # of tours which "respect" the cycl. order = O(k!n^k).

 \blacklozenge They can be enumerated in O(1) time per tour.

• The length of each tour can be computed in O(n) time.

The running time = $O(n \log n) + O(k!n^{k+1})$.

convex hull computation

- # of tours which "respect" the cycl. order = $O(k!n^k)$.
- \clubsuit They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.
- The running time = $O(n \log n) + O(k!n^{k+1})$.

convex hull computation

- # of tours which "respect" the cycl. order = $O(k!n^k)$.
- \blacklozenge They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.
- The running time = $O(n \log n) + O(k!n^{k+1})$.

convex hull computation

- # of tours which "respect" the cycl. order = $O(k!n^k)$.
- \blacklozenge They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.
- The running time = $O(n \log n) + O(k!n^{k+1})$.

convex hull computation

- # of tours which "respect" the cycl. order = $O(k!n^k)$.
- \blacklozenge They can be enumerated in O(1) time per tour.
- The length of each tour can be computed in O(n) time.
- The running time = $O(n \log n) + O(k!n^{k+1})$.

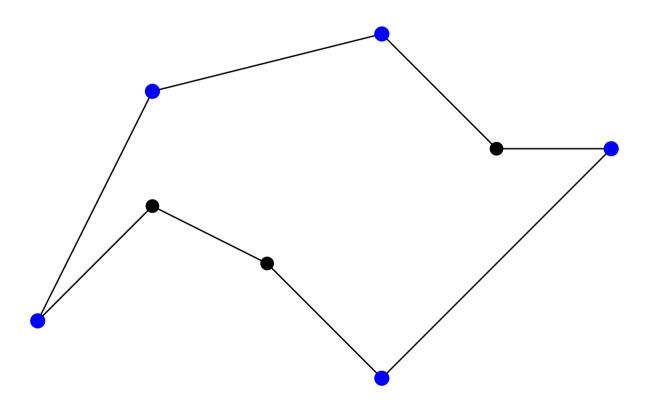
convex hull computation

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- ♦ Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.
- Third algorithm runs in polynomial time when $k = O(\log n)$.

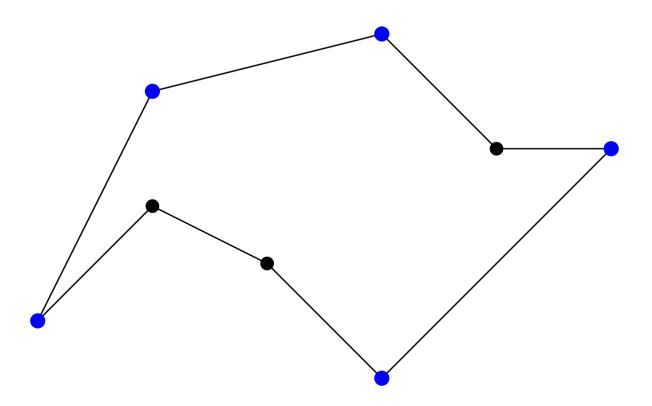
Idea for the second algorithm

Fact we already saw

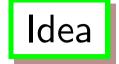
An optimal tour respects a cyclic order on the non-inner points.



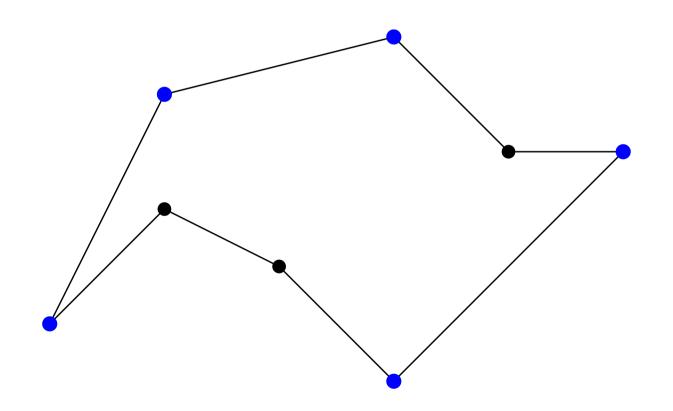
An optimal tour respects some linear order on the inner points.



Idea for the second algorithm



Try all linear orders on the inner points.



- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (a) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

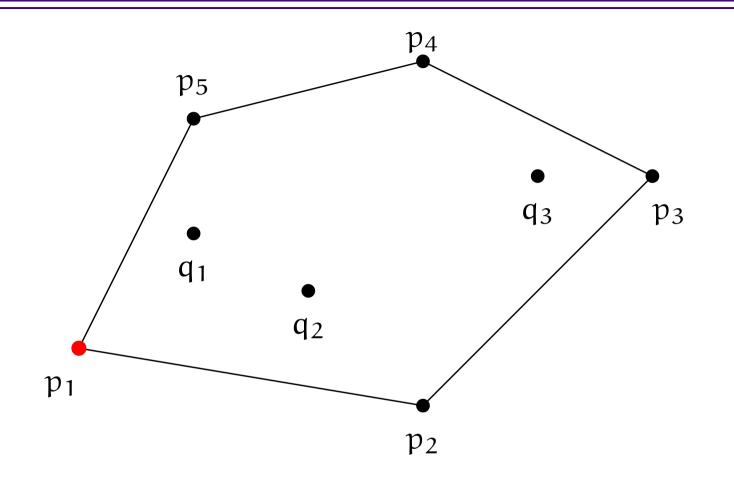
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (a) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

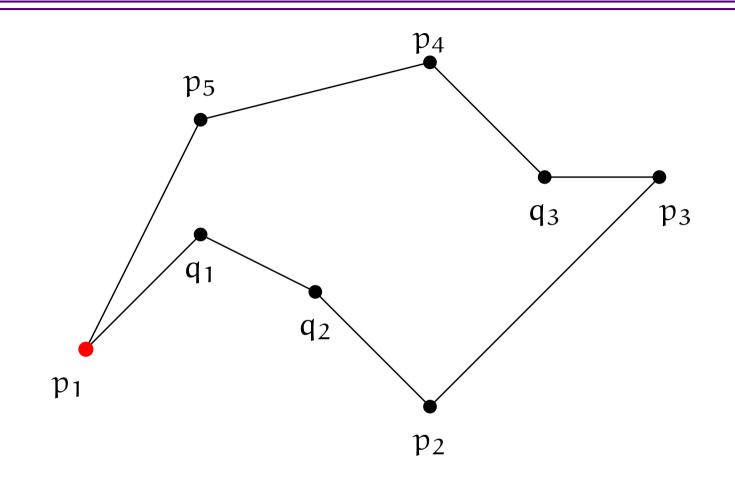
- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (a) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (a) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

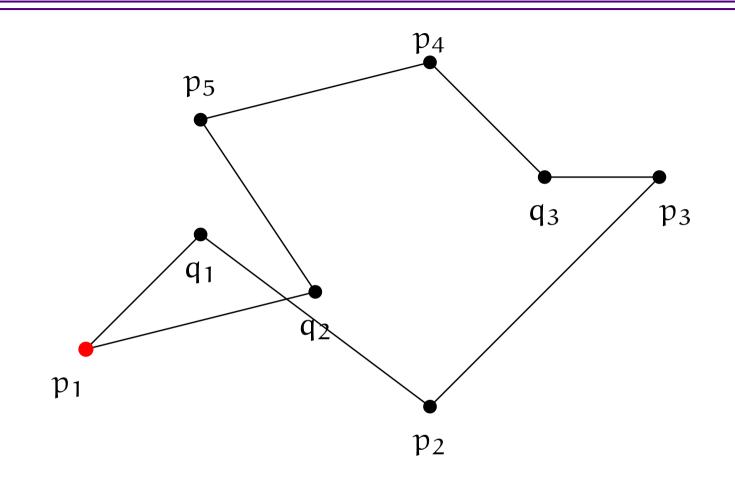
- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (a) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (a) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.

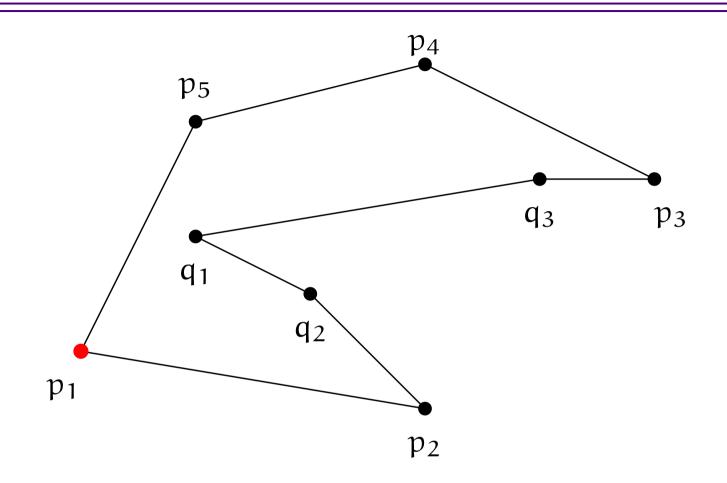




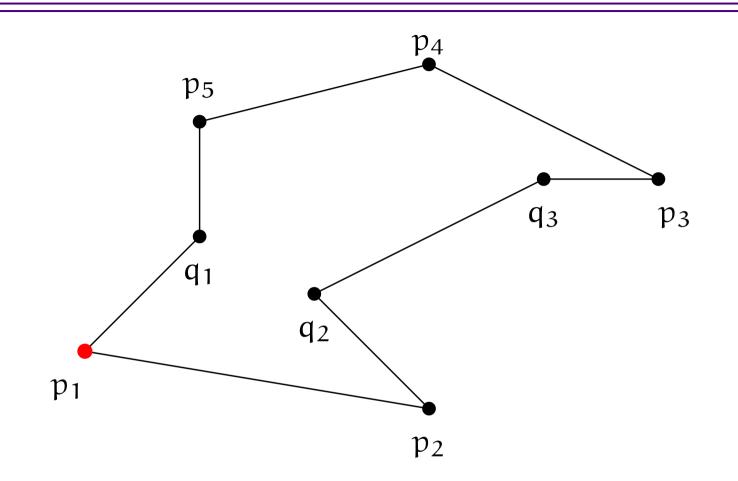
Optimal tour among those which respect the cyclic order and the order "1-2-3."



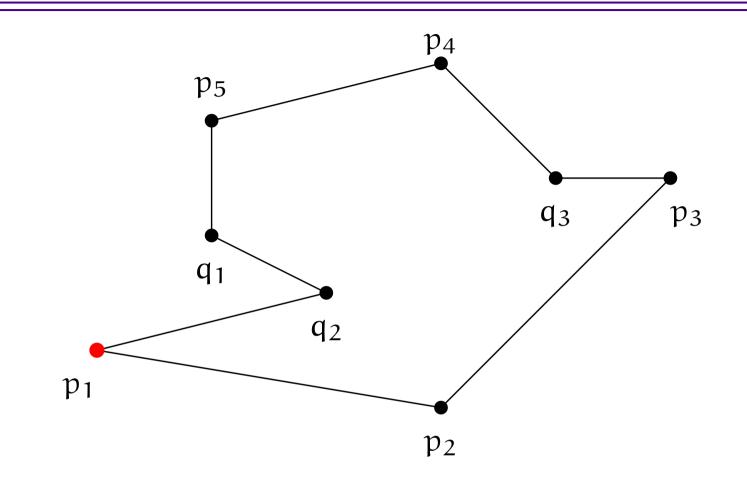
Optimal tour among those which respect the cyclic order and the order "1-3-2."



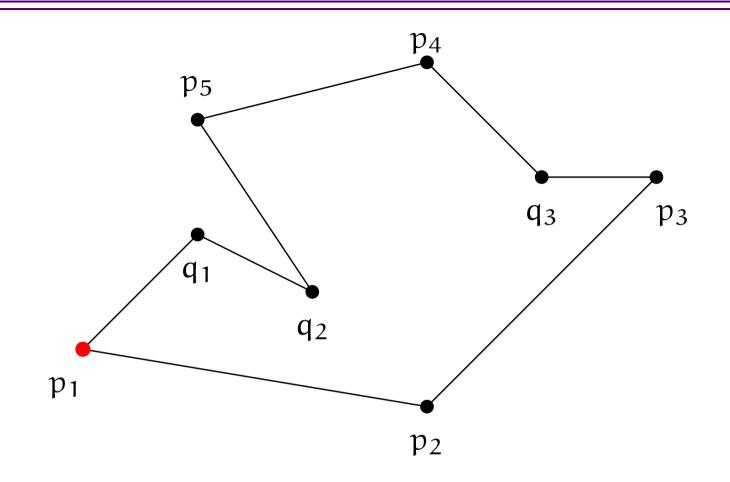
Optimal tour among those which respect the cyclic order and the order "2-1-3."



Optimal tour among those which respect the cyclic order and the order "2-3-1."



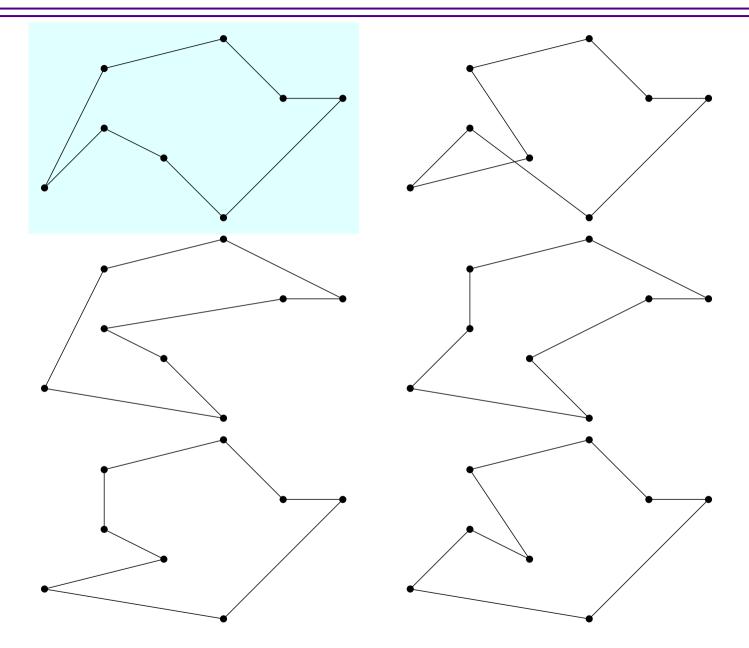
Optimal tour among those which respect the cyclic order and the order "3-1-2."



Optimal tour among those which respect the cyclic order and the order "3-2-1."

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Choose the best one



- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (a) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.
- Not yet clear: How to do Step (3a)??

Dynamic programming

a cycl. order on the non-inner pts $\mathfrak{p}_1,\ldots,\mathfrak{p}_{n-k}$ a linear order on the inner pts q_1,\ldots,q_k F(i, j) := the length of a shortest path from p_1 to p_i via p_1, \ldots, p_i and q_1, \ldots, q_i which respects these two orders **q**₁ **q**₂ p_1 p_5 p_2 p_3 \mathfrak{p}_4 (i = 5, j = 2)

EIGENÖSSISCHE Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Dynamic programming

a cycl. order on the non-inner pts $\mathfrak{p}_1,\ldots,\mathfrak{p}_{n-k}$ a linear order on the inner pts q_1,\ldots,q_k F(i,j) :=the length of a shortest path from p_1 to q_1 via p_1, \ldots, p_i and q_1, \ldots, q_i which respects these two orders **q**₁ q_2 p_1 p_5 p_2 p_3 \mathfrak{p}_4 (i = 5, j = 2)

♦ The length of a shortest tour which respects these two orders is the minimum of F(<u>n-k</u>, k) + d(p_{n-k}, p₁) and F(<u>n-k</u>, <u>k</u>) + d(q_k, p₁).
♦ By the dynamic programming technique, F(<u>n-k</u>, k) and F(<u>n-k</u>, <u>k</u>) can be computed in O(kn) time.

♦ The length of a shortest tour which respects these two orders is the minimum of F(<u>n-k</u>, k) + d(p_{n-k}, p₁) and F(<u>n-k</u>, <u>k</u>) + d(q_k, p₁).
♦ By the dynamic programming technique, F(<u>n-k</u>, k) and F(<u>n-k</u>, <u>k</u>) can be computed in O(<u>kn</u>) time.

- (1) Distinguish the inner points and the non-inner points;
- (2) Fix a cyclic order on the non-inner points;
- (3) For each linear order on the inner points
 - (a) Compute an optimal tour among those which respect these two orders;
- (4) Choose the best one among them.
- What remains: the analysis of the running time

 \blacklozenge # of linear orders on k points = k!.

- \blacklozenge They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time =
$$O(n \log n) + O(k!kn)$$
.

convex hull computation

- \clubsuit # of linear orders on k points = k!.
- \blacklozenge They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time =
$$O(n \log n) + O(k!kn)$$
.

convex hull computation

 \blacklozenge # of linear orders on k points = k!.

- They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time
$$= O(n \log n) + O(k!kn)$$
.

convex hull computation

- \blacklozenge # of linear orders on k points = k!.
- \blacklozenge They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time =
$$O(n \log n) + O(k!kn)$$
.

convex hull computation

 \blacklozenge # of linear orders on k points = k!.

- \blacklozenge They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time $= O(n \log n) + O(k!kn)$.

convex hull computation

 \blacklozenge # of linear orders on k points = k!.

- \blacklozenge They can be enumerated in O(1) time per order.
- The length of an optimal tour which respects the two orders can be computed in O(kn) time.

The running time =
$$O(n \log n) + O(k!kn)$$
.

convex hull computation

We give three simple algorithms.

- n := the total number of points
- k := the number of inner points
- First algorithm runs in polynomial time when k = O(1).
- Second algorithm runs in polynomial time when $k = O(\log n / \log \log n)$.
- Third algorithm runs in polynomial time when $k = O(\log n)$.

Open problem: Improve the bound!

(Lawler '76)

Technique: **"Dynamic Programming across the Subsets"** (Held & Karp '62)

- The traveling salesman problem
 - Trivial: n!
 - DPatS: 2ⁿ
 (Held & Karp '62, Bellman '62)
- Total completion time scheduling under prec. constraints
 - Trivial: n!
 - DPatS: 2ⁿ (Held & Karp '62)
- Chromatic number of a graph
 - Trivial: Bell number B_n (# of partitions)
 - DPatS: 2.4422ⁿ
- Nice survey: Woeginger '03

- The traveling salesman problem
 - Trivial: n!
 - DPatS: 2ⁿ
 (Held & Karp '62, Bellman '62)
- Total completion time scheduling under prec. constraints
 - Trivial: n!
 - DPatS: 2ⁿ (Held & Karp '62)
- Chromatic number of a graph
 - Trivial: Bell number B_n (# of partitions)
 - DPatS: 2.4422ⁿ

(Lawler '76)

- The traveling salesman problem
 - Trivial: n!
 - DPatS: 2ⁿ
 (Held & Karp '62, Bellman '62)
- Total completion time scheduling under prec. constraints
 - Trivial: n!
 - DPatS: 2ⁿ (Held & Karp '62)
- Chromatic number of a graph
 - Trivial: Bell number B_n (# of partitions)
 - DPatS: 2.4422ⁿ

(Lawler '76)

- The traveling salesman problem
 - Trivial: n!
 - DPatS: 2ⁿ
 (Held & Karp '62, Bellman '62)
- Total completion time scheduling under prec. constraints
 - Trivial: n!
 - DPatS: 2ⁿ (Held & Karp '62)
- Chromatic number of a graph
 - Trivial: Bell number B_n (# of partitions)
 - DPatS: 2.4422ⁿ (Lawler '76)

- The traveling salesman problem
 - Trivial: n!
 - DPatS: 2ⁿ
 (Held & Karp '62, Bellman '62)
- Total completion time scheduling under prec. constraints
 - Trivial: n!
 - DPatS: 2ⁿ (Held & Karp '62)
- Chromatic number of a graph
 - Trivial: Bell number B_n (# of partitions)
 - DPatS: 2.4422ⁿ

(Lawler '76)

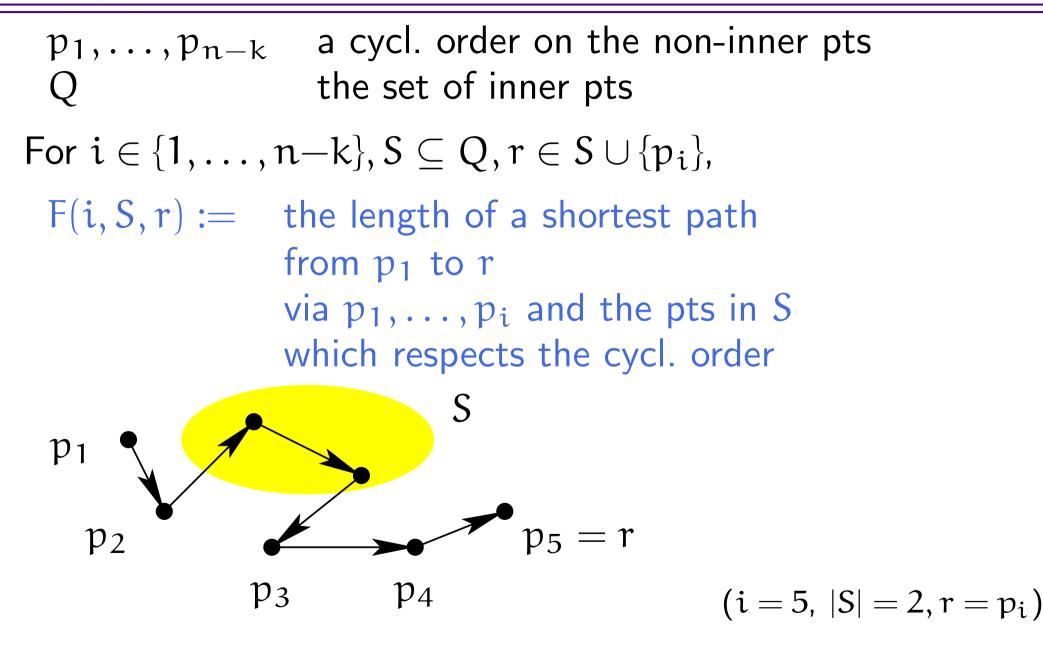
- Perform a DP k! times.
- Each DP takes O(kn) time.
- Third algorithm
 - Perform a DP once.
 - Each DP takes $O(2^k k^2 n)$ time.

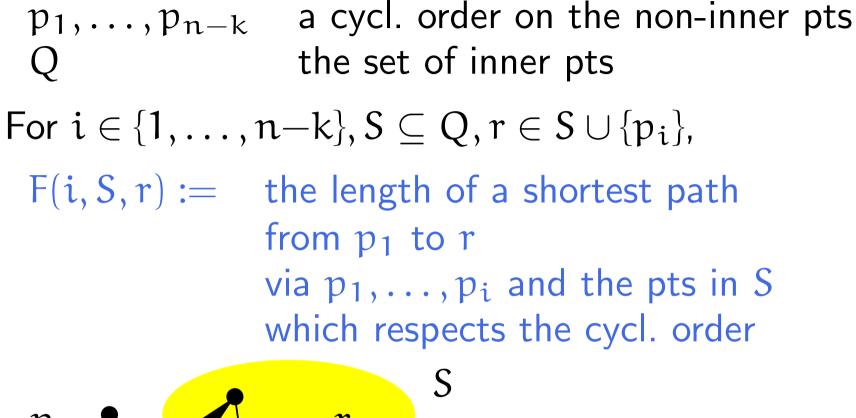
- Perform a DP k! times.
- Each DP takes O(kn) time.
- Third algorithm
 - Perform a DP once.
 - Each DP takes $O(2^k k^2 n)$ time.

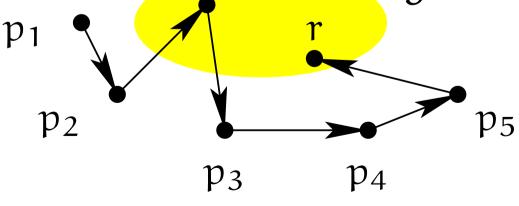
- Perform a DP k! times.
- Each DP takes O(kn) time.
- Third algorithm
 - Perform a DP once.
 - Each DP takes $O(2^k k^2 n)$ time.

- Perform a DP k! times.
- Each DP takes O(kn) time.
- Third algorithm
 - Perform a DP once.
 - Each DP takes $O(2^k k^2 n)$ time.

- HEAVY LIGHT
- LIGHT HEAVY







 $(i = 5, |S| = 2, r \in S)$

By the dynamic programming technique, these values can be computed in O(2^kk²n) time. ♦ The length of a shortest tour which respects the cycl. order is the minimum of F(n-k, Q, r) + d(r, p₁) among all r ∈ Q ∪ {p_{n-k}}.
♦ By the dynamic programming technique,

these values can be computed in $O(2^kk^2n)$ time.

(1) Distinguish the inner points and the non-inner points;

- (2) Fix a cyclic order on the non-inner points;
- (3) Perform the DPatS above.
- The running time = $O(n \log n) + O(2^k k^2 n)$.

convex hull computation

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;
(3) Perform the DPatS above.
The running time = O(n log n) +O(2^kk²n).

convex hull computation

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) Perform the DPatS above.

The running time = $O(n \log n) + O(2^k k^2 n)$.

convex hull computation

(1) Distinguish the inner points and the non-inner points;
 (2) Fix a cyclic order on the non-inner points;

- (3) Perform the DPatS above.
- The running time = $O(n \log n) + O(2^k k^2 n)$.

convex hull computation

(1) Distinguish the inner points and the non-inner points;

- (2) Fix a cyclic order on the non-inner points;
- (3) Perform the DPatS above.
- The running time = $O(n \log n) + O(2^k k^2 n)$.

convex hull computation

Summary

We gave three simple algorithms.

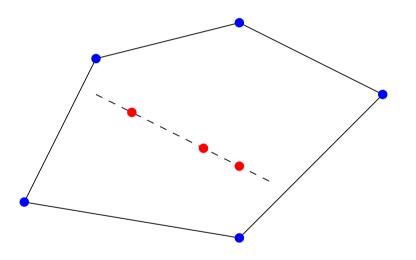
- n := the total number of points
- k := the number of inner points

	Time	Space	PTIME if $k =$
First	$O(k!n^{k+1})$		O(1)
Second	O(k!kn)	O(k)	$O(\log n / \log \log n)$
Third	$O(2^k k^2 n)$	$O(2^k kn)$	$O(\log n)$

Related work

(Deĭneko, van Dal & Rote '96)

The convex-hull-and-line TSP can be solved in O(kn) time.

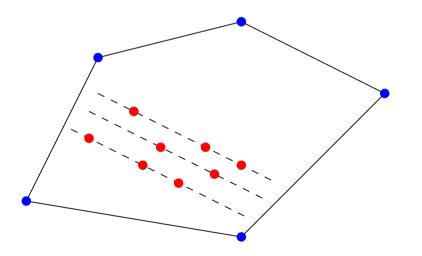


Our work $\begin{cases} \text{ deals with the most general case.} \\ \text{ still runs in linear time in } n. \end{cases}$

Related work

(Deĭneko & Woeginger '96)

The convex-hull-and- ℓ -line TSP can be solved in $O(f(k, \ell)n^2)$ time for some fn f.



Our work $\begin{cases} \text{ deals with the most general case.} \\ \text{ still runs in linear time in } n. \end{cases}$

The same strategy works for other problems.

- The prize-collecting TSP
- The partial TSP

Result

The 2D versions of these problems with k inner points can be solved in polynomial time when $k = O(\log n)$.

General framework

Many problems can be solved in poly time when some parameters are bounded.

- Graph optimization problems
 - bounded treewidth
 - bounded genus
 - ...

Many problems can be solved in poly time when some parameters are bounded.

- Graph optimization problems
 - bounded treewidth
 - bounded genus
 - • •
- Geometric optimization problems in 2D
 - bounded number of inner points

Many problems can be solved in poly time when some parameters are bounded.

- Graph optimization problems
 - bounded treewidth
 - bounded genus
 - • •
- Geometric optimization problems in 2D
 - bounded number of inner points
 - ...?

Many problems can be solved in poly time when some parameters are bounded.

- Graph optimization problems
 - bounded treewidth
 - bounded genus
 - ...
- Geometric optimization problems in 2D
 - bounded number of inner points
 - ...?
- Distance-from-Triviality approach

(Guo, Hüffner, Niedermeier IWPEC '04 Niedermeier MFCS '04)

Thank you

감사합니다.

