Eidgendssische Technische Hochschule Zirich

The Traveling Salesman Problem
with Few Inner Points

Vladimir Deineko U Warwick UK
Michael Hoffmann ETH Zurich CH
Yoshio Okamoto ETH Zurich CH
Gerhard Woeginger TU Eindhoven NL

August 18, 2004 @ COCOON 2004, Jeju Island, Republic of Korea

sl S The 2DTSP

Given: finite set of points on R?
Find: a minimum-length tour

sl S The 2DTSP

Given: finite set of points on R?
Find: a minimum-length tour

ETH @ oo Known facts about 2DTSP

® In general, it is NP-hard.
(Garey, Graham & Johnson '76
Papadimitriou '77)

¢ When the points are in convex position,
the problem is easy.

ETH @ oo Known facts about 2DTSP

¢ In general, it is NP-hard.
(Garey, Graham & Johnson '76
Papadimitriou '77)

® When the points are in convex position,
the problem is easy.

,,,,,,,,,,,, Motivation

Swiiss Federal institute qfl’g:hnnhnrzurh:h

The inner points make the problem difficult.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Motivation

The inner points make the problem difficult.

How many inner points can we have in order to
obtain a polynomial-time algorithm?

Eidgendssische Technische Hochschule Zirich R e S u I t

We give three simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

¢ Second algorithm runs in polynomial time
when k = O(logn/loglogn).

¢ Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

.. Result
Swiss Federal Institute of Technolegy Zurich

We give three simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

¢ Second algorithm runs in polynomial time
when k = O(logn/loglogn).

¢ Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

.. Result
Swiss Federal Institute of Technology Zurich

We give three simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

® Second algorithm runs in polynomial time
when k = O(logn/loglogn).

¢ Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

.. Result
Swiss Federal Institute of Technolegy Zurich

We give three simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

¢ Second algorithm runs in polynomial time
when k = O(logn/loglogn).

® Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

.. Result
Swiss Federal Institute of Technolegy Zurich

We give three simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

¢ Second algorithm runs in polynomial time
when k = O(logn/loglogn).

¢ Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

.. Result
Swiss Federal Institute of Technology Zurich

We give three simple algorithms.

n := the total number of points
k := the number of inner points

® First algorithm runs in polynomial time
when k = O(1).

¢ Second algorithm runs in polynomial time
when k = O(logn/loglogn).

¢ Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

ETH o A useful fact

(Flood '56)

An optimal tour has no self-crossing.

Proof

S 7 N

oL ST Corollary

Swiss Federal Institute of Technolegy Zurich

Corollary

An optimal tour visits the non-inner points in a
cyclic order.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Corollary

Corollary

An optimal tour visits the non-inner points in a
cyclic order.

Proof

Suppose not.
, Then da “skip.”
/ Skipped points must be vis-
ited later,
which causes a self-crossing.
® A contradiction.

—

.. One inner point

Consider the case k = 1. (k := # of inner pts)

Inner point: d
Non-inner points: p1,P2,...,Pn_1
labeled according to a cyclic order

P7

Pe
P1

P5

P2
P4

Ps3

.. One inner point

of tours which “respect” the cycl. order = n—1.

7\

N

Choose the best one.

First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.

.. First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.

.. First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.

.. First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.

.. First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.

.. First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.

Eidgendssische Technische Hochschule Zirich R u n n i n g ti m e

There are k inner points.

¢ # of tours which “respect” the cycl. order = O(k!nk).
¢ They can be enumerated in O(1) time per tour.

® The length of each tour can be computed in O(n) time.

The running time = O(nlogn) +0O(knk*").

G 7

V

convex hull
computation

When k Is a constant, this is polynomial in n.

Eidgendssische Technische Hochschule Zirich R u n n i n g t i m e

There are k inner points.

® + of tours which “respect” the cycl. order = O(k!nk).
¢ They can be enumerated in O(1) time per tour.

® The length of each tour can be computed in O(n) time.

The running time = O(nlogn) +0O(knk*").

G 7

V

convex hull
computation

When k Is a constant, this is polynomial in n.

Eidgendssische Technische Hochschule Zirich R u n n i n g t i m e

There are k inner points.

¢ # of tours which “respect” the cycl. order = O(k!nk).
® They can be enumerated in O(1) time per tour.

® The length of each tour can be computed in O(n) time.

The running time = O(nlogn) +0O(knk*").

G 7

V

convex hull
computation

When k Is a constant, this is polynomial in n.

,, Running time

There are k inner points.

¢ # of tours which “respect” the cycl. order = O(k!nk).
¢ They can be enumerated in O(1) time per tour.

® The length of each tour can be computed in O(n) time.

The running time = O(nlogn) +O(knk*").

G 7

V

convex hull
computation

When k Is a constant, this is polynomial in n.

Eidgendssische Technische Hochschule Zirich R u n n i n g t i m e

There are k inner points.

¢ # of tours which “respect” the cycl. order = O(k!nk).
¢ They can be enumerated in O(1) time per tour.

® The length of each tour can be computed in O(n) time.

The running time = O(nlogn) 4+ O(knk*1).

G 7

V

convex hull
computation

When k Is a constant, this is polynomial in n.

Eidgendssische Technische Hochschule Zirich R u n n i n g t i m e

There are k inner points.

¢ # of tours which “respect” the cycl. order = O(k!nk).
¢ They can be enumerated in O(1) time per tour.

® The length of each tour can be computed in O(n) time.

The running time = O(nlogn) +0O(knk*").

G 7

V

convex hull
computation

When k Is a constant, this is polynomial in n.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Result
Swiss Federal Institute of Technology Zurich

We give three simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

® Second algorithm runs in polynomial time
when k = O(logn/loglogn).

¢ Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

,,,,,,,,,,,,,,,,,,,,,, Idea for the second algorithm

we already saw

An optimal tour respects
a cyclic order on the non-inner points.

,,,,,,,,,,,, Idea for the second algorithm

An optimal tour respects
some linear order on the inner points.

i S Idea for the second algorithm

Try all linear orders on the inner points.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

.. Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

.. Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Eidgendssische Technische Hochschule Zirich E xa m p I e

Swiiss Federal institute qfl’g:hnnhmrlurl:h

P4
P5

P3

P1

P2

,, Example

P2

Optimal tour among those which respect
the cyclic order and the order “1-2-3."

.. Example

P2

Optimal tour among those which respect
the cyclic order and the order “1-3-2."

.. Example

P2

Optimal tour among those which respect
the cyclic order and the order “2-1-3."

LA Example

P4

p 75////\‘

d3 P3
d1
J2
P1

P2

Optimal tour among those which respect
the cyclic order and the order “2-3-1

LA Example

P4

% /\

d3 P3
d1
J2
P1

P2

Optimal tour among those which respect
the cyclic order and the order “3-1-2

.. Example

P2

Optimal tour among those which respect
the cyclic order and the order “3-2-1."

R s oot Choose the best one

.. Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Not yet clear: How to do Step (3a)??

S Dynamic programming
P1,...,Pn_x a cycl. order on the non-inner pts
di,...,dqx a linear order on the inner pts
F(i,j) := the length of a shortest path

from p1 to p;
VIa P1,y...,Pi and di1,..-,4;
which respects these two orders
d1
P1 a2
P2 >0/.P5
P3 P4

(i=5,j=2)

T Dynamic programming
P1,...,Pn_x a cycl. order on the non-inner pts
di,...,dqx a linear order on the inner pts
F(i,j) := the length of a shortest path
fr.om p1 to g;
vVia P1,...,Pi and di1,..-,4;
which respects these two orders
d1
P1 q2

P2

=

P3 P4 (i=5j=2)

....................................... Dynamic programming

® The length of a shortest tour
which respects these two orders is

the minimum of
F(n—k, k) + d(pn—x,P1) and
F(n_kw]ﬁ) Bl d(qk>p1)
¢ By the dynamic programming technique,
F(n—k, k) and F(n—k, k) can be computed in
O(kn) time.

....................................... Dynamic programming

¢ The length of a shortest tour
which respects these two orders is

the minimum of
F(n—k,k) + d(pn—x,p1) and
F(n—k,k) + d(dx, p1)-
& By the dynamic programming technique,
F(n—k, k) and F(n—k, k) can be computed in
O(kn) time.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

What remains: the analysis of the running time

Eidgendssische Technische Hochschule Zirich R u n n i n g ti m e

There are k inner points.

& + of linear orders on k points = k!.
¢ They can be enumerated in O(1) time per order.

® The length of an optimal tour which respects the two
orders can be computed in O(kn) time.

The running time = O(nlogn)4+0(k!kn).

A\ 4

V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

Eidgendssische Technische Hochschule Zirich R u n n i n g t i m e

There are k inner points.

& + of linear orders on k points = k!.
¢ They can be enumerated in O(1) time per order.

® The length of an optimal tour which respects the two
orders can be computed in O(kn) time.

The running time = O(nlogn)4+0(k!kn).

A\ 4

V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

Eidgendssische Technische Hochschule Zirich R u n n i n g t i m e

There are k inner points.

& + of linear orders on k points = k!.
® They can be enumerated in O(1) time per order.

¢ The length of an optimal tour which respects the two
orders can be computed in O(kn) time.
The running time = O(nlogn)4+0(k!kn).

A\ 4
V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

,, Running time

There are k inner points.

& + of linear orders on k points = k!.
¢ They can be enumerated in O(1) time per order.

® The length of an optimal tour which respects the two
orders can be computed in O(kn) time.
The running time = O(nlogn)4+0(k!kn).

A\ 4
V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

Eidgendssische Technische Hochschule Zirich R u n n i n g t i m e

There are k inner points.

& + of linear orders on k points = k!.
¢ They can be enumerated in O(1) time per order.

® The length of an optimal tour which respects the two
orders can be computed in O(kn) time.

The running time = O(nlogn) + O(k!kn).

A\ 4

V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

Eidgendssische Technische Hochschule Zirich R u n n i n g t i m e

There are k inner points.

& + of linear orders on k points = k!.
¢ They can be enumerated in O(1) time per order.

¢ The length of an optimal tour which respects the two
orders can be computed in O(kn) time.
The running time = O(nlogn)4+0(k!kn).

A\ 4
V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.

.. Result
Swiss Federal Institute of Technology Zurich

We give three simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

¢ Second algorithm runs in polynomial time
when k = O(logn/loglogn).

® Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp '62)
¢ The traveling salesman problem
® [rivial: n!
e DPatS: 2" (Held & Karp '62, Bellman '62)
¢ Total completion time scheduling under prec. constraints
® [rivial: n!
e DPatS: 2™ (Held & Karp '62)
¢ Chromatic number of a graph

® Trivial: Bell number B;, (# of partitions)
e DPatS: 2.4422™ (Lawler '76)

Nice survey: Woeginger '03

.. Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp '62)
® The traveling salesman problem
® [rivial: n!
e DPatS: 2™ (Held & Karp '62, Bellman '62)
¢ Total completion time scheduling under prec. constraints
® [rivial: n!
e DPatS: 2™ (Held & Karp '62)
¢ Chromatic number of a graph

® Trivial: Bell number B;, (# of partitions)
e DPatS: 2.4422™ (Lawler '76)

Nice survey: Woeginger '03

.. Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp '62)
¢ The traveling salesman problem
® [rivial: n!
e DPatS: 2" (Held & Karp '62, Bellman '62)
& Total completion time scheduling under prec. constraints
® [rivial: n!
e DPatS: 2™ (Held & Karp '62)
¢ Chromatic number of a graph

® Trivial: Bell number B;, (# of partitions)
e DPatS: 2.4422™ (Lawler '76)

Nice survey: Woeginger '03

.. Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp '62)
¢ The traveling salesman problem
® [rivial: n!
e DPatS: 2" (Held & Karp '62, Bellman '62)
¢ Total completion time scheduling under prec. constraints
® [rivial: n!
e DPatS: 2™ (Held & Karp '62)
® Chromatic number of a graph

® Trivial: Bell number B;, (# of partitions)
e DPatS: 2.4422™ (Lawler '76)

Nice survey: Woeginger '03

Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp '62)
¢ The traveling salesman problem
® [rivial: n!
e DPatS: 2" (Held & Karp '62, Bellman '62)
¢ Total completion time scheduling under prec. constraints
® [rivial: n!
e DPatS: 2™ (Held & Karp '62)
¢ Chromatic number of a graph

® Trivial: Bell number B;, (# of partitions)
e DPatS: 2.4422™ (Lawler '76)

Nice survey: Woeginger 03

.. Basic scheme for the third algorithm

¢ Second algorithm

® Perform a DP k! times.
e Each DP takes O(kn) time.

¢ Third algorithm

® Perform a DP once.
e Each DP takes O(2¥k?n) time.

....................................... Basic scheme for the third algorithm

® Second algorithm

® Perform a DP k! times.
e Each DP takes O(kn) time.

¢ Third algorithm

® Perform a DP once.
e Each DP takes O(2¥k?n) time.

....................................... Basic scheme for the third algorithm

¢ Second algorithm

® Perform a DP k! times.
e Each DP takes O(kn) time.

® Third algorithm

® Perform a DP once.
® Each DP takes O(2%k?n) time.

i SOOI Basic scheme for the third algorithm

¢ Second algorithm

® Perform a DP k! times. HEAVY

e Each DP takes O(kn) time. LIGHT
® Third algorithm

® Perform a DP once. LIGHT

® Each DP takes O(2%k’n) time. HEAVY

LA DPatS for our problem
P1,...,Pn_x a cycl. order on the non-inner pts
Q the set of inner pts
Forie{l,... n—k};,SC Q,re Sui{pi},
F(i,S,7) := the length of a shortest path
from py tor
via p1,...,pi and the ptsin S
which respects the cycl. order
S
P1
P2)0/.195 =T
P3 Pa (1=5, IS|=2,1 =p1)

LA DPatS for our problem
P1,...,Pn_x a cycl. order on the non-inner pts
Q the set of inner pts
Forie{l,... n—k};,SC Q,re Sui{pi},
F(i,S,7) := the length of a shortest path
from py tor
via p1,...,pi and the ptsin S
which respects the cycl. order
S
P1 T

P2 >P5

P3 P4 (i=5,1S|=2,1r€8)

....................................... Dynamic Programming

® The length of a shortest tour
which respects the cycl. order Is

the minimum of F(n—k, Q,r) + d(r,p1)
among all r € Q U{pn_«}.
¢ By the dynamic programming technique,

these values can be computed in O(2¥k?’n) time.

....................................... Dynamic Programming

¢ The length of a shortest tour
which respects the cycl. order Is

the minimum of F(n—k, Q,r) + d(r,p1)
among all r € Q U{pn_x«}.
& By the dynamic programming technique,

these values can be computed in O(2¥k?’n) time.

Outline of the third algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) Perform the DPatS above.

The running time = O(nlogn)+0(2%k?n).

convex hull
computation

When k = O(logn), this is polynomial in n.

.. Outline of the third algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) Perform the DPatS above.

The running time = O(nlogn)+0(2%k?n).

convex hull
computation

When k = O(logn), this is polynomial in n.

.. Outline of the third algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) Perform the DPatS above.

The running time = O(nlogn)+0(2%k?n).

convex hull
computation

When k = O(logn), this is polynomial in n.

Outline of the third algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) Perform the DPatS above.

The running time = O(nlogn)+0(2%k?n).

convex hull
computation

When k = O(logn), this is polynomial in n.

e iy Outline of the third algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;
(3) Perform the DPatS above.

The running time = O(nlogn) +0(2%k?n).

. 7
V

convex hull
computation

When k = O(logn), this is polynomial in n.

.. Summary

We gave three simple algorithms.

n := the total number of points
k := the number of inner points

Time Space PTIME if k =

First | O(kInk+T) O(1)
Second O(k!kn) O(k) O(logn/loglogn)
Third | O(2*k’n) O(2kkn) O(logn)

,, Related work

Thm (Deineko, van Dal & Rote '96)

The convex-hull-and-line TSP can be
solved in O(kn) time.

deals with the most general case.
still runs in linear time In n.

Our work {

,, Related work

Thm (Deineko & Woeginger '96)

The convex-hull-and-£-line TSP can be
solved in O(f(k, £)n?) time for some fn f.

deals with the most general case.
still runs in linear time In n.

Our work {

ETH o Variations

The same strategy works for other problems.

& The prize-collecting TSP
¢ The partial TSP

The 2D versions of these problems
with kK inner points
can be solved in polynomial time

when k = O(logn).

,,,,,,,,,,,, S— General framework

Many problems can be solved in poly time
when some parameters are bounded.

¢ Graph optimization problems

® bounded treewidth

e bounded genus

....................................... General framework

Many problems can be solved in poly time
when some parameters are bounded.

¢ Graph optimization problems

® bounded treewidth

e bounded genus

¢ Geometric optimization problems in 2D
e bounded number of inner points

....................................... General framework

Many problems can be solved in poly time
when some parameters are bounded.

¢ Graph optimization problems

® bounded treewidth

e bounded genus

¢ Geometric optimization problems in 2D

e bounded number of inner points
® .7

....................................... General framework

Many problems can be solved in poly time
when some parameters are bounded.

¢ Graph optimization problems

® bounded treewidth

e bounded genus

¢ Geometric optimization problems in 2D

e bounded number of inner points
® .7

— Distance-from-Triviality approach
(Guo, Hiiffner, Niedermeier IWPEC '04
Niedermeier MFCS '04)

....................................... Thank you

A g ot

Y g™
9,

