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The inner points make the problem difficult.

How many inner points can we have in order to
obtain a polynomial-time algorithm?
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We give three simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

¢ Second algorithm runs in polynomial time
when k = O(logn/loglogn).

¢ Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!
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ETH o A useful fact

(Flood '56)

An optimal tour has no self-crossing.

Proof

S 7 N
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Corollary

An optimal tour visits the non-inner points in a
cyclic order.
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Corollary

An optimal tour visits the non-inner points in a
cyclic order.

Proof

Suppose not.
, Then da “skip.”
/ Skipped points must be vis-
ited later,
which causes a self-crossing.
® A contradiction.

—




........................................ One inner point

Consider the case k = 1. (k := # of inner pts)

Inner point: d
Non-inner points:  p1,P2,...,Pn_1
labeled according to a cyclic order

P7
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........................................ One inner point

# of tours which “respect” the cycl. order = n—1.

7\

N

Choose the best one.




First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.




........................................ First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.




........................................ First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.




........................................ First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.




........................................ First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.




........................................ First algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order
(a) Compute the length of the tour;

(4) Choose the best one among them.




Eidgendssische Technische Hochschule Zirich R u n n i n g ti m e

There are k inner points.

¢ # of tours which “respect” the cycl. order = O(k!nk).
¢ They can be enumerated in O(1) time per tour.

® The length of each tour can be computed in O(n) time.

The running time = O(nlogn) +0O(knk*").

G 7

V

convex hull
computation

When k Is a constant, this is polynomial in n.
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We give three simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

® Second algorithm runs in polynomial time
when k = O(logn/loglogn).

¢ Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!
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we already saw

An optimal tour respects
a cyclic order on the non-inner points.
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An optimal tour respects
some linear order on the inner points.




i S Idea for the second algorithm

Try all linear orders on the inner points.




Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.
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P2

Optimal tour among those which respect
the cyclic order and the order “1-2-3."
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P2

Optimal tour among those which respect
the cyclic order and the order “1-3-2."
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P2

Optimal tour among those which respect
the cyclic order and the order “2-1-3."
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Optimal tour among those which respect
the cyclic order and the order “2-3-1
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Optimal tour among those which respect
the cyclic order and the order “3-1-2
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P2

Optimal tour among those which respect
the cyclic order and the order “3-2-1."




R s oot Choose the best one




........................................ Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Not yet clear: How to do Step (3a)??




S Dynamic programming
P1,...,Pn_x a cycl. order on the non-inner pts
di,...,dqx a linear order on the inner pts
F(i,j) := the length of a shortest path

from p1 to p;
VIa P1,y...,Pi and di1,..-,4;
which respects these two orders
d1
P1 a2
P2 >0/.P5
P3 P4

(i=5,j=2)




T Dynamic programming
P1,...,Pn_x a cycl. order on the non-inner pts
di,...,dqx a linear order on the inner pts
F(i,j) := the length of a shortest path
fr.om p1 to g;
vVia P1,...,Pi and di1,..-,4;
which respects these two orders
d1
P1 q2

P2

=

P3 P4 (i=5j=2)




....................................... Dynamic programming

® The length of a shortest tour
which respects these two orders is

the minimum of
F(n—k, k) + d(pn—x,P1) and
F(n_kw]ﬁ) Bl d(qk>p1 )
¢ By the dynamic programming technique,
F(n—k, k) and F(n—k, k) can be computed in
O(kn) time.
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¢ The length of a shortest tour
which respects these two orders is

the minimum of
F(n—k,k) + d(pn—x,p1) and
F(n—k,k) + d(dx, p1)-
& By the dynamic programming technique,
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Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;
(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

What remains: the analysis of the running time
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There are k inner points.

& + of linear orders on k points = k!.
¢ They can be enumerated in O(1) time per order.

® The length of an optimal tour which respects the two
orders can be computed in O(kn) time.

The running time = O(nlogn)4+0(k!kn).

A\ 4

V

convex hull
computation

When k = O(logn/loglogn), this is poly. in n.
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We give three simple algorithms.

n := the total number of points
k := the number of inner points

& First algorithm runs in polynomial time
when k = O(1).

¢ Second algorithm runs in polynomial time
when k = O(logn/loglogn).

® Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!




Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp '62)
¢ The traveling salesman problem
® [rivial: n!
e DPatS: 2" (Held & Karp '62, Bellman '62)
¢ Total completion time scheduling under prec. constraints
® [rivial: n!
e DPatS: 2™ (Held & Karp '62)
¢ Chromatic number of a graph

® Trivial: Bell number B;, (# of partitions)
e DPatS: 2.4422™ (Lawler '76)

Nice survey: Woeginger '03
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e Each DP takes O(kn) time.

¢ Third algorithm

® Perform a DP once.
e Each DP takes O(2¥k?n) time.




....................................... Basic scheme for the third algorithm

® Second algorithm

® Perform a DP k! times.
e Each DP takes O(kn) time.

¢ Third algorithm

® Perform a DP once.
e Each DP takes O(2¥k?n) time.




....................................... Basic scheme for the third algorithm

¢ Second algorithm

® Perform a DP k! times.
e Each DP takes O(kn) time.

® Third algorithm

® Perform a DP once.
® Each DP takes O(2%k?n) time.




i SOOI Basic scheme for the third algorithm

¢ Second algorithm

® Perform a DP k! times. HEAVY

e Each DP takes O(kn) time. LIGHT
® Third algorithm

® Perform a DP once. LIGHT

® Each DP takes O(2%k’n) time. HEAVY
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F(i,S,7) := the length of a shortest path
from py tor
via p1,...,pi and the ptsin S
which respects the cycl. order
S
P1
P2 )0/.195 =T
P3 Pa (1=5, IS|=2,1 =p1)
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....................................... Dynamic Programming

® The length of a shortest tour
which respects the cycl. order Is

the minimum of F(n—k, Q,r) + d(r,p1)
among all r € Q U{pn_«}.
¢ By the dynamic programming technique,

these values can be computed in O(2¥k?’n) time.
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........................................ Summary

We gave three simple algorithms.

n := the total number of points
k := the number of inner points

Time Space PTIME if k =

First | O(kInk+T) O(1)
Second O(k!kn) O(k) O(logn/loglogn)
Third | O(2*k’n) O(2kkn) O(logn)
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Thm (Deineko, van Dal & Rote '96)

The convex-hull-and-line TSP can be
solved in O(kn) time.

deals with the most general case.
still runs in linear time In n.

Our work {




,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Related work

Thm (Deineko & Woeginger '96)

The convex-hull-and-£-line TSP can be
solved in O(f(k, £)n?) time for some fn f.

deals with the most general case.
still runs in linear time In n.

Our work {




ETH o Variations

The same strategy works for other problems.

& The prize-collecting TSP
¢ The partial TSP

The 2D versions of these problems
with kK inner points
can be solved in polynomial time

when k = O(logn).
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Many problems can be solved in poly time
when some parameters are bounded.

¢ Graph optimization problems

® bounded treewidth

e bounded genus




....................................... General framework

Many problems can be solved in poly time
when some parameters are bounded.

¢ Graph optimization problems

® bounded treewidth

e bounded genus

¢ Geometric optimization problems in 2D
e bounded number of inner points




....................................... General framework

Many problems can be solved in poly time
when some parameters are bounded.

¢ Graph optimization problems

® bounded treewidth

e bounded genus

¢ Geometric optimization problems in 2D

e bounded number of inner points
® .7




....................................... General framework

Many problems can be solved in poly time
when some parameters are bounded.

¢ Graph optimization problems

® bounded treewidth

e bounded genus

¢ Geometric optimization problems in 2D

e bounded number of inner points
® .7

— Distance-from-Triviality approach
(Guo, Hiiffner, Niedermeier IWPEC '04
Niedermeier MFCS '04)
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