
The Traveling Salesman Problem
with Few Inner Points

Vladimir Dĕıneko U Warwick UK
Michael Hoffmann ETH Zurich CH
Yoshio Okamoto ETH Zurich CH
Gerhard Woeginger TU Eindhoven NL

August 18, 2004 @ COCOON 2004, Jeju Island, Republic of Korea

The 2DTSP

Given: finite set of points on IR2

Find: a minimum-length tour

The 2DTSP

Given: finite set of points on IR2

Find: a minimum-length tour

Known facts about 2DTSP

�� In general, it is NP-hard.
(Garey, Graham & Johnson ’76

Papadimitriou ’77)

�� When the points are in convex position,
the problem is easy.

Known facts about 2DTSP

�� In general, it is NP-hard.
(Garey, Graham & Johnson ’76

Papadimitriou ’77)

�� When the points are in convex position,
the problem is easy.

Motivation

. ObservationObservation

The inner points make the problem difficult.

Motivation

. ObservationObservation

The inner points make the problem difficult.

. MotivationMotivation

How many inner points can we have in order to
obtain a polynomial-time algorithm?

Result

. ResultResult

We give three simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

�� Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

Result

. ResultResult

We give three simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

�� Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

Result

. ResultResult

We give three simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

�� Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

Result

. ResultResult

We give three simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

�� Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

Result

. ResultResult

We give three simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

�� Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

Result

. ResultResult

We give three simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

�� Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

A useful fact

. FactFact (Flood ’56)

An optimal tour has no self-crossing.

. ProofProof

Corollary

. CorollaryCorollary

An optimal tour visits the non-inner points in a
cyclic order.

Corollary

. CorollaryCorollary

An optimal tour visits the non-inner points in a
cyclic order.

. ProofProof

Suppose not.
Then ∃ a “skip.”
Skipped points must be vis-
ited later,
which causes a self-crossing.
A contradiction.

One inner point

Consider the case k = 1. (k := # of inner pts)

Inner point: q
Non-inner points: p1, p2, . . . , pn−1

labeled according to a cyclic order

p3

p7

q p5

p4

p2

p1
p6

One inner point

of tours which “respect” the cycl. order = n−1.

Choose the best one.

First algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order

(a) Compute the length of the tour;

(4) Choose the best one among them.

First algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order

(a) Compute the length of the tour;

(4) Choose the best one among them.

First algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order

(a) Compute the length of the tour;

(4) Choose the best one among them.

First algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order

(a) Compute the length of the tour;

(4) Choose the best one among them.

First algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order

(a) Compute the length of the tour;

(4) Choose the best one among them.

First algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order

(a) Compute the length of the tour;

(4) Choose the best one among them.

Running time

There are k inner points.

�� # of tours which “respect” the cycl. order = O(k!nk).

�� They can be enumerated in O(1) time per tour.

�� The length of each tour can be computed in O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.

Running time

There are k inner points.

�� # of tours which “respect” the cycl. order = O(k!nk).

�� They can be enumerated in O(1) time per tour.

�� The length of each tour can be computed in O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.

Running time

There are k inner points.

�� # of tours which “respect” the cycl. order = O(k!nk).

�� They can be enumerated in O(1) time per tour.

�� The length of each tour can be computed in O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.

Running time

There are k inner points.

�� # of tours which “respect” the cycl. order = O(k!nk).

�� They can be enumerated in O(1) time per tour.

�� The length of each tour can be computed in O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.

Running time

There are k inner points.

�� # of tours which “respect” the cycl. order = O(k!nk).

�� They can be enumerated in O(1) time per tour.

�� The length of each tour can be computed in O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+ O(k!nk+1).

When k is a constant, this is polynomial in n.

Running time

There are k inner points.

�� # of tours which “respect” the cycl. order = O(k!nk).

�� They can be enumerated in O(1) time per tour.

�� The length of each tour can be computed in O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.

Result

. ResultResult

We give three simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

�� Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

Idea for the second algorithm

. FactFact we already saw

An optimal tour respects
a cyclic order on the non-inner points.

Idea for the second algorithm

. Another factAnother fact

An optimal tour respects
some linear order on the inner points.

Idea for the second algorithm

. IdeaIdea

Try all linear orders on the inner points.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “1–2–3.”

Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “1–2–3.”

Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “1–3–2.”

Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “2–1–3.”

Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “2–3–1.”

Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “3–1–2.”

Example

p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “3–2–1.”

Choose the best one

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Not yet clear: How to do Step (3a)??

Dynamic programming

p1, . . . , pn−k a cycl. order on the non-inner pts
q1, . . . , qk a linear order on the inner pts
F(i, j) := the length of a shortest path

from p1 to pi
via p1, . . . , pi and q1, . . . , qj
which respects these two orders

q2

q1

p5

p4p3

p2

p1

(i = 5, j = 2)

Dynamic programming

p1, . . . , pn−k a cycl. order on the non-inner pts
q1, . . . , qk a linear order on the inner pts
F(i, j) := the length of a shortest path

from p1 to qj
via p1, . . . , pi and q1, . . . , qj
which respects these two orders

q2

q1

p5

p4p3

p2

p1

(i = 5, j = 2)

Dynamic programming

�� The length of a shortest tour
which respects these two orders is

the minimum of
F(n−k, k) + d(pn−k, p1) and
F(n−k, k) + d(qk, p1).

�� By the dynamic programming technique,

F(n−k, k) and F(n−k, k) can be computed in
O(kn) time.

Dynamic programming

�� The length of a shortest tour
which respects these two orders is

the minimum of
F(n−k, k) + d(pn−k, p1) and
F(n−k, k) + d(qk, p1).

�� By the dynamic programming technique,

F(n−k, k) and F(n−k, k) can be computed in
O(kn) time.

Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

What remains: the analysis of the running time

Running time

There are k inner points.

�� # of linear orders on k points = k!.

�� They can be enumerated in O(1) time per order.

�� The length of an optimal tour which respects the two
orders can be computed in O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!kn).

When k = O(logn/ log logn), this is poly. in n.

Running time

There are k inner points.

�� # of linear orders on k points = k!.

�� They can be enumerated in O(1) time per order.

�� The length of an optimal tour which respects the two
orders can be computed in O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!kn).

When k = O(logn/ log logn), this is poly. in n.

Running time

There are k inner points.

�� # of linear orders on k points = k!.

�� They can be enumerated in O(1) time per order.

�� The length of an optimal tour which respects the two
orders can be computed in O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!kn).

When k = O(logn/ log logn), this is poly. in n.

Running time

There are k inner points.

�� # of linear orders on k points = k!.

�� They can be enumerated in O(1) time per order.

�� The length of an optimal tour which respects the two
orders can be computed in O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!kn).

When k = O(logn/ log logn), this is poly. in n.

Running time

There are k inner points.

�� # of linear orders on k points = k!.

�� They can be enumerated in O(1) time per order.

�� The length of an optimal tour which respects the two
orders can be computed in O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+ O(k!kn).

When k = O(logn/ log logn), this is poly. in n.

Running time

There are k inner points.

�� # of linear orders on k points = k!.

�� They can be enumerated in O(1) time per order.

�� The length of an optimal tour which respects the two
orders can be computed in O(kn) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!kn).

When k = O(logn/ log logn), this is poly. in n.

Result

. ResultResult

We give three simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

�� Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!

Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp ’62)

�� The traveling salesman problem
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62, Bellman ’62)

�� Total completion time scheduling under prec. constraints
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62)

�� Chromatic number of a graph

•• Trivial: Bell number Bn (# of partitions)
•• DPatS: 2.4422n (Lawler ’76)

Nice survey: Woeginger ’03

Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp ’62)

�� The traveling salesman problem
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62, Bellman ’62)

�� Total completion time scheduling under prec. constraints
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62)

�� Chromatic number of a graph

•• Trivial: Bell number Bn (# of partitions)
•• DPatS: 2.4422n (Lawler ’76)

Nice survey: Woeginger ’03

Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp ’62)

�� The traveling salesman problem
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62, Bellman ’62)

�� Total completion time scheduling under prec. constraints
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62)

�� Chromatic number of a graph

•• Trivial: Bell number Bn (# of partitions)
•• DPatS: 2.4422n (Lawler ’76)

Nice survey: Woeginger ’03

Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp ’62)

�� The traveling salesman problem
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62, Bellman ’62)

�� Total completion time scheduling under prec. constraints
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62)

�� Chromatic number of a graph

•• Trivial: Bell number Bn (# of partitions)
•• DPatS: 2.4422n (Lawler ’76)

Nice survey: Woeginger ’03

Dynamic programming across the subsets

Technique: “Dynamic Programming across the Subsets”
(Held & Karp ’62)

�� The traveling salesman problem
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62, Bellman ’62)

�� Total completion time scheduling under prec. constraints
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62)

�� Chromatic number of a graph

•• Trivial: Bell number Bn (# of partitions)
•• DPatS: 2.4422n (Lawler ’76)

Nice survey: Woeginger ’03

Basic scheme for the third algorithm

�� Second algorithm
•• Perform a DP k! times.
•• Each DP takes O(kn) time.

�� Third algorithm
•• Perform a DP once.
•• Each DP takes O(2kk2n) time.

Basic scheme for the third algorithm

�� Second algorithm
•• Perform a DP k! times.
•• Each DP takes O(kn) time.

�� Third algorithm
•• Perform a DP once.
•• Each DP takes O(2kk2n) time.

Basic scheme for the third algorithm

�� Second algorithm
•• Perform a DP k! times.
•• Each DP takes O(kn) time.

�� Third algorithm
•• Perform a DP once.
•• Each DP takes O(2kk2n) time.

Basic scheme for the third algorithm

�� Second algorithm
•• Perform a DP k! times. HEAVY
•• Each DP takes O(kn) time. LIGHT

�� Third algorithm
•• Perform a DP once. LIGHT
•• Each DP takes O(2kk2n) time. HEAVY

DPatS for our problem

p1, . . . , pn−k a cycl. order on the non-inner pts
Q the set of inner pts

For i ∈ {1, . . . , n−k}, S ⊆ Q, r ∈ S ∪ {pi},

F(i, S, r) := the length of a shortest path
from p1 to r
via p1, . . . , pi and the pts in S
which respects the cycl. order

p2

p3 p4

p5 = r

S
p1

(i = 5, |S| = 2, r = pi)

DPatS for our problem

p1, . . . , pn−k a cycl. order on the non-inner pts
Q the set of inner pts

For i ∈ {1, . . . , n−k}, S ⊆ Q, r ∈ S ∪ {pi},

F(i, S, r) := the length of a shortest path
from p1 to r
via p1, . . . , pi and the pts in S
which respects the cycl. order

p2

p3 p4

p5

r
S

p1

(i = 5, |S| = 2, r ∈ S)

Dynamic Programming

�� The length of a shortest tour
which respects the cycl. order is

the minimum of F(n−k,Q, r) + d(r, p1)
among all r ∈ Q ∪ {pn−k}.

�� By the dynamic programming technique,

these values can be computed in O(2kk2n) time.

Dynamic Programming

�� The length of a shortest tour
which respects the cycl. order is

the minimum of F(n−k,Q, r) + d(r, p1)
among all r ∈ Q ∪ {pn−k}.

�� By the dynamic programming technique,

these values can be computed in O(2kk2n) time.

Outline of the third algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) Perform the DPatS above.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(2kk2n).

When k = O(logn), this is polynomial in n.

Outline of the third algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) Perform the DPatS above.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(2kk2n).

When k = O(logn), this is polynomial in n.

Outline of the third algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) Perform the DPatS above.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(2kk2n).

When k = O(logn), this is polynomial in n.

Outline of the third algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) Perform the DPatS above.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(2kk2n).

When k = O(logn), this is polynomial in n.

Outline of the third algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) Perform the DPatS above.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(2kk2n).

When k = O(logn), this is polynomial in n.

Summary

. ResultResult

We gave three simple algorithms.

n := the total number of points
k := the number of inner points

Time Space PTIME if k =

First O(k!nk+1) O(1)
Second O(k!kn) O(k) O(logn/ log logn)
Third O(2kk2n) O(2kkn) O(logn)

Related work

. ThmThm (Dĕıneko, van Dal & Rote ’96)

The convex-hull-and-line TSP can be
solved in O(kn) time.

Our work

{
deals with the most general case.
still runs in linear time in n.

Related work

. ThmThm (Dĕıneko & Woeginger ’96)

The convex-hull-and-`-line TSP can be
solved in O(f(k, `)n2) time for some fn f.

Our work

{
deals with the most general case.
still runs in linear time in n.

Variations

The same strategy works for other problems.

�� The prize-collecting TSP

�� The partial TSP

. ResultResult

The 2D versions of these problems
with k inner points
can be solved in polynomial time
when k = O(logn).

General framework

Many problems can be solved in poly time
when some parameters are bounded.

�� Graph optimization problems
•• bounded treewidth
•• bounded genus
•• ...

Geometric optimization problems in 2D
bounded number of inner points
...?

General framework

Many problems can be solved in poly time
when some parameters are bounded.

�� Graph optimization problems
•• bounded treewidth
•• bounded genus
•• ...

�� Geometric optimization problems in 2D
•• bounded number of inner points

...?

General framework

Many problems can be solved in poly time
when some parameters are bounded.

�� Graph optimization problems
•• bounded treewidth
•• bounded genus
•• ...

�� Geometric optimization problems in 2D
•• bounded number of inner points
•• ...?

General framework

Many problems can be solved in poly time
when some parameters are bounded.

�� Graph optimization problems
•• bounded treewidth
•• bounded genus
•• ...

�� Geometric optimization problems in 2D
•• bounded number of inner points
•• ...?

⇒ Distance-from-Triviality approach
(Guo, Hüffner, Niedermeier IWPEC ’04

Niedermeier MFCS ’04)

Thank you

