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. ObservationObservation

The inner points make the problem difficult.

. MotivationMotivation

How many inner points can we have in order to
obtain a polynomial-time algorithm?



Result

. ResultResult

We give three simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

�� Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!
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A useful fact

. FactFact (Flood ’56)

An optimal tour has no self-crossing.

. ProofProof



Corollary

. CorollaryCorollary

An optimal tour visits the non-inner points in a
cyclic order.



Corollary

. CorollaryCorollary

An optimal tour visits the non-inner points in a
cyclic order.

. ProofProof

Suppose not.
Then ∃ a “skip.”
Skipped points must be vis-
ited later,
which causes a self-crossing.
A contradiction.



One inner point

Consider the case k = 1. (k := # of inner pts)

Inner point: q
Non-inner points: p1, p2, . . . , pn−1

labeled according to a cyclic order

p3

p7

q p5

p4

p2

p1
p6



One inner point

# of tours which “respect” the cycl. order = n−1.

Choose the best one.



First algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each tour which respects the cyclic order

(a) Compute the length of the tour;

(4) Choose the best one among them.
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Running time

There are k inner points.

�� # of tours which “respect” the cycl. order = O(k!nk).

�� They can be enumerated in O(1) time per tour.

�� The length of each tour can be computed in O(n) time.

The running time = O(n logn)︸ ︷︷ ︸
convex hull

computation

+O(k!nk+1).

When k is a constant, this is polynomial in n.
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Result

. ResultResult

We give three simple algorithms.

n := the total number of points
k := the number of inner points

�� First algorithm runs in polynomial time
when k = O(1).

�� Second algorithm runs in polynomial time
when k = O(logn/ log logn).

�� Third algorithm runs in polynomial time
when k = O(logn).

Open problem: Improve the bound!



Idea for the second algorithm

. FactFact we already saw

An optimal tour respects
a cyclic order on the non-inner points.



Idea for the second algorithm

. Another factAnother fact

An optimal tour respects
some linear order on the inner points.



Idea for the second algorithm

. IdeaIdea

Try all linear orders on the inner points.



Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.
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p5

p4

p3

p2

p1

q3

q2

q1

Optimal tour among those which respect
the cyclic order and the order “3–2–1.”



Choose the best one



Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

Not yet clear: How to do Step (3a)??



Dynamic programming

p1, . . . , pn−k a cycl. order on the non-inner pts
q1, . . . , qk a linear order on the inner pts
F(i, j) := the length of a shortest path

from p1 to pi
via p1, . . . , pi and q1, . . . , qj
which respects these two orders
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(i = 5, j = 2)
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Dynamic programming

�� The length of a shortest tour
which respects these two orders is

the minimum of
F(n−k, k) + d(pn−k, p1) and
F(n−k, k) + d(qk, p1).

�� By the dynamic programming technique,

F(n−k, k) and F(n−k, k) can be computed in
O(kn) time.
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Outline of the second algorithm

(1) Distinguish the inner points and the non-inner points;

(2) Fix a cyclic order on the non-inner points;

(3) For each linear order on the inner points

(a) Compute an optimal tour among those which respect
these two orders;

(4) Choose the best one among them.

What remains: the analysis of the running time
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�� They can be enumerated in O(1) time per order.
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n := the total number of points
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when k = O(1).
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(Held & Karp ’62)

�� The traveling salesman problem
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•• DPatS: 2n (Held & Karp ’62, Bellman ’62)

�� Total completion time scheduling under prec. constraints
•• Trivial: n!
•• DPatS: 2n (Held & Karp ’62)

�� Chromatic number of a graph

•• Trivial: Bell number Bn (# of partitions)
•• DPatS: 2.4422n (Lawler ’76)
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Basic scheme for the third algorithm

�� Second algorithm
•• Perform a DP k! times. HEAVY
•• Each DP takes O(kn) time. LIGHT

�� Third algorithm
•• Perform a DP once. LIGHT
•• Each DP takes O(2kk2n) time. HEAVY



DPatS for our problem

p1, . . . , pn−k a cycl. order on the non-inner pts
Q the set of inner pts

For i ∈ {1, . . . , n−k}, S ⊆ Q, r ∈ S ∪ {pi},

F(i, S, r) := the length of a shortest path
from p1 to r
via p1, . . . , pi and the pts in S
which respects the cycl. order

p2

p3 p4

p5 = r

S
p1

(i = 5, |S| = 2, r = pi)
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p1, . . . , pn−k a cycl. order on the non-inner pts
Q the set of inner pts

For i ∈ {1, . . . , n−k}, S ⊆ Q, r ∈ S ∪ {pi},

F(i, S, r) := the length of a shortest path
from p1 to r
via p1, . . . , pi and the pts in S
which respects the cycl. order

p2

p3 p4

p5

r
S

p1

(i = 5, |S| = 2, r ∈ S)



Dynamic Programming

�� The length of a shortest tour
which respects the cycl. order is

the minimum of F(n−k,Q, r) + d(r, p1)
among all r ∈ Q ∪ {pn−k}.

�� By the dynamic programming technique,

these values can be computed in O(2kk2n) time.
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Summary

. ResultResult

We gave three simple algorithms.

n := the total number of points
k := the number of inner points

Time Space PTIME if k =

First O(k!nk+1) O(1)
Second O(k!kn) O(k) O(logn/ log logn)
Third O(2kk2n) O(2kkn) O(logn)



Related work

. ThmThm (Dĕıneko, van Dal & Rote ’96)

The convex-hull-and-line TSP can be
solved in O(kn) time.

Our work

{
deals with the most general case.
still runs in linear time in n.



Related work

. ThmThm (Dĕıneko & Woeginger ’96)

The convex-hull-and-`-line TSP can be
solved in O(f(k, `)n2) time for some fn f.

Our work

{
deals with the most general case.
still runs in linear time in n.



Variations

The same strategy works for other problems.

�� The prize-collecting TSP

�� The partial TSP

. ResultResult

The 2D versions of these problems
with k inner points
can be solved in polynomial time
when k = O(logn).
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Many problems can be solved in poly time
when some parameters are bounded.

�� Graph optimization problems
•• bounded treewidth
•• bounded genus
•• ...

Geometric optimization problems in 2D
bounded number of inner points
...?
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General framework

Many problems can be solved in poly time
when some parameters are bounded.

�� Graph optimization problems
•• bounded treewidth
•• bounded genus
•• ...

�� Geometric optimization problems in 2D
•• bounded number of inner points
•• ...?

⇒ Distance-from-Triviality approach
(Guo, Hüffner, Niedermeier IWPEC ’04

Niedermeier MFCS ’04)



Thank you


