The affine representation theorem for abstract convex geometries

Yoshio Okamoto (ETH Zurich)

Barbados Undercurrent Workshop March 7–14, 2004 @ Bellairs Research Institute, McGill Univ.

Joint work with Kenji Kashiwabara and Masataka Nakamura (The University of Tokyo)

Supported by the Berlin-Zürich Joint Graduate Program

Combinatorial abstract models of geometric concepts	
	of dependence
Application:	<pre>{ Finite geometry Coding theory Combinatorial optimization</pre>
Oriented Matroids abstraction of dependence	
Application:	Convex polytopes Computational geometry Discrete geometry Optimization
Convex geometriesabstraction of convexity	
Application:	{ Discrete geometry { Social choice theory Mathematical psychology

Matroidsabstraction of dependence

Every matroid can be represented as a homotopy-sphere arrangement. (Swartz, '03)

Oriented Matroids abstraction of dependence

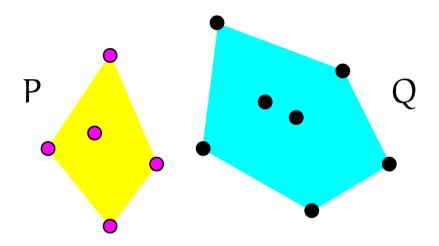
Every oriented matroid can be represented as a pseudohyperplane arrangement. (Forkman–Lawrence, '78)

Convex geometriesabstraction of convexity

Answer

Our Theorem:

Every convex geometry is isomorphic to some generalized convex shelling,



determined by two point sets P and Q satisfying that $\operatorname{conv}(P) \cap \operatorname{conv}(Q) = \emptyset$.

This gives an affine representation of a convex geometry.

Contents

Every convex geometry is isomorphic to some generalized convex shelling.

In the rest of my talk

- Definition of a convex geometry
- Examples of a convex geometry
- Definition of a generalized convex shelling
- Our theorem
- Outline of the proof

Convex geometries

(Edelman–Jamison '85)

E a nonempty finite set

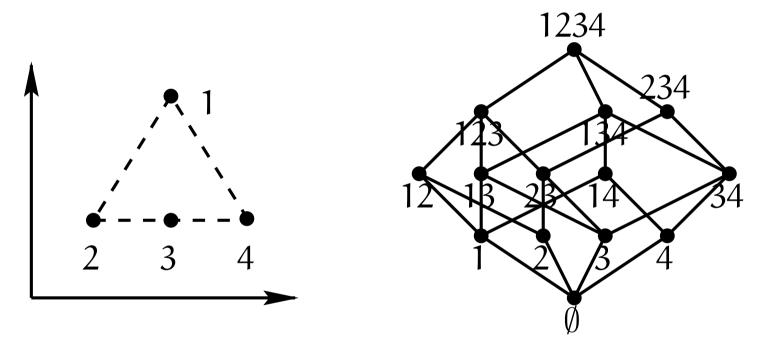
 $\ensuremath{\mathcal{L}}$ a nonempty family of subsets of E

f. L ⊆ 2^E is called a convex geometry on E if L satisfies the following three conditions.

(1) $\emptyset \in \mathcal{L}, E \in \mathcal{L}.$ (2) $X, Y \in \mathcal{L} \Longrightarrow X \cap Y \in \mathcal{L}.$ (3) $X \in \mathcal{L} \setminus \{E\} \Longrightarrow \exists e \in E \setminus X \text{ s.t. } X \cup \{e\} \in \mathcal{L}.$ Q a finite point set in $\mathrm{I\!R}^d$

6

Define: $\mathcal{L} = \{ X \subseteq Q : \operatorname{conv}(X) \cap (Q \setminus X) = \emptyset \}.$

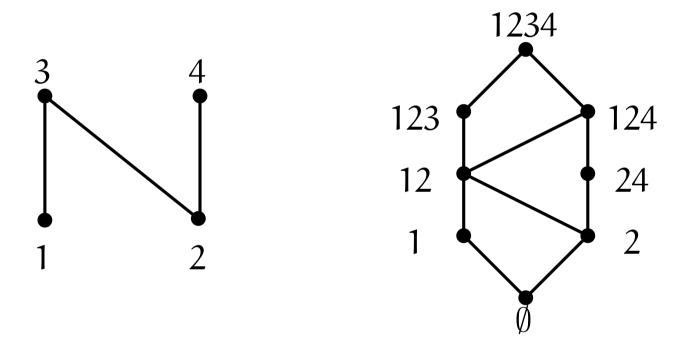


 \mathcal{L} is a convex geometry and called the convex shelling on Q.

Example 2: poset shelling

 $\mathcal{P} = (\mathsf{E}, \leq)$ a partially ordered set

Define: $\mathcal{L} = \{ X \subseteq E : e \in X, f \leq e \Rightarrow f \in X \}.$



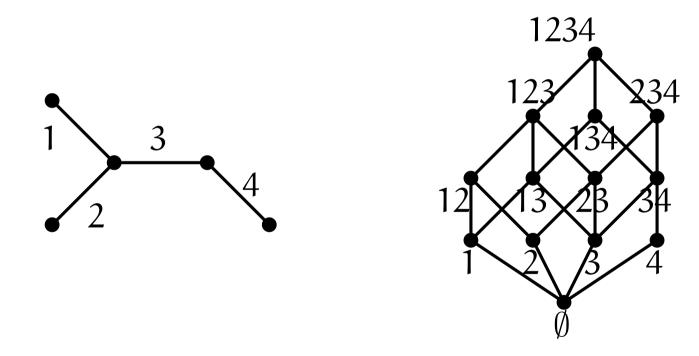
 \mathcal{L} is a convex geometry on E and called the poset shelling of \mathcal{P} .

T = (V, E) a tree

Define:

8

 $\mathcal{L} = \{ X \subseteq E : X \text{ forms a subtree of } T \}.$



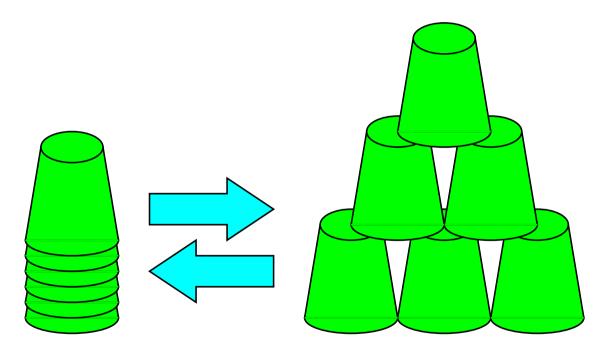
 ${\mathcal L}$ is a convex geometry on E and called the tree shelling of T

Example 4: cupstacks

What is "cupstacks"?

9

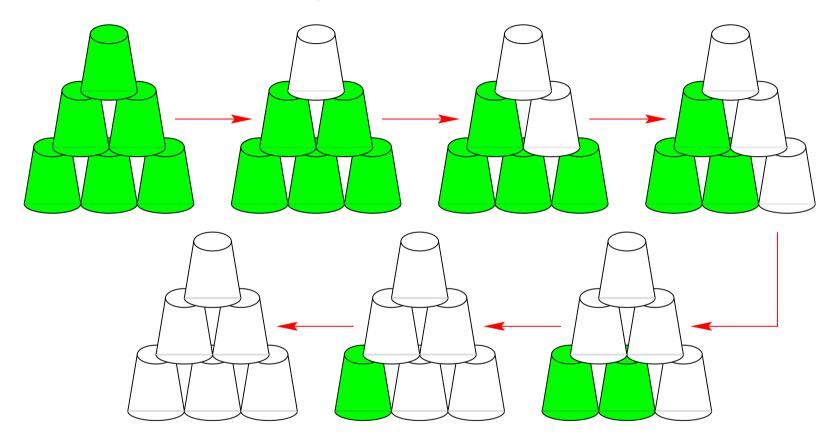
Construct the tower from the pile and get it back as quickly as possible.



Example 4: cupstacks

A sequence in collapsing

 10_{1}

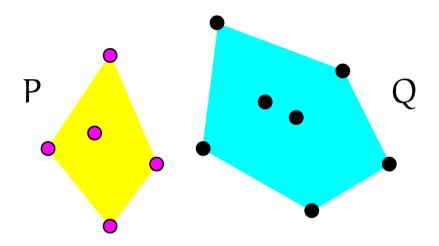


Our Theorem (again)

Our Theorem:

11

Every convex geometry is isomorphic to some generalized convex shelling,



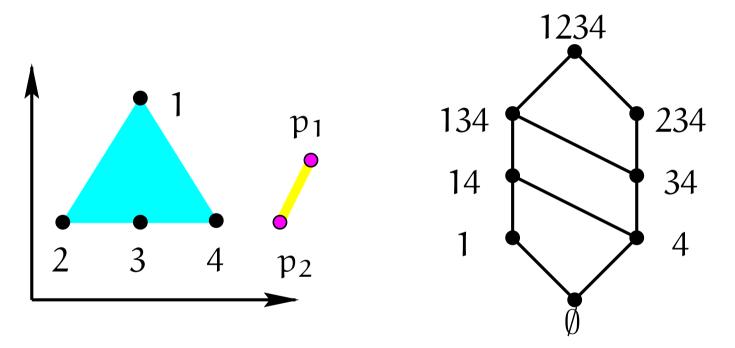
determined by two point sets P and Q satisfying that $conv(P) \cap conv(Q) = \emptyset$.

This gives an affine representation of a convex geometry.

Generalized convex shelling

P,Q finite point sets in \mathbb{R}^d satisfying $\operatorname{conv}(P) \cap Q = \emptyset$ Define: $\mathcal{L} = \{X \subseteq Q : \operatorname{conv}(X \cup P) \cap (Q \setminus X) = \emptyset\}.$

12



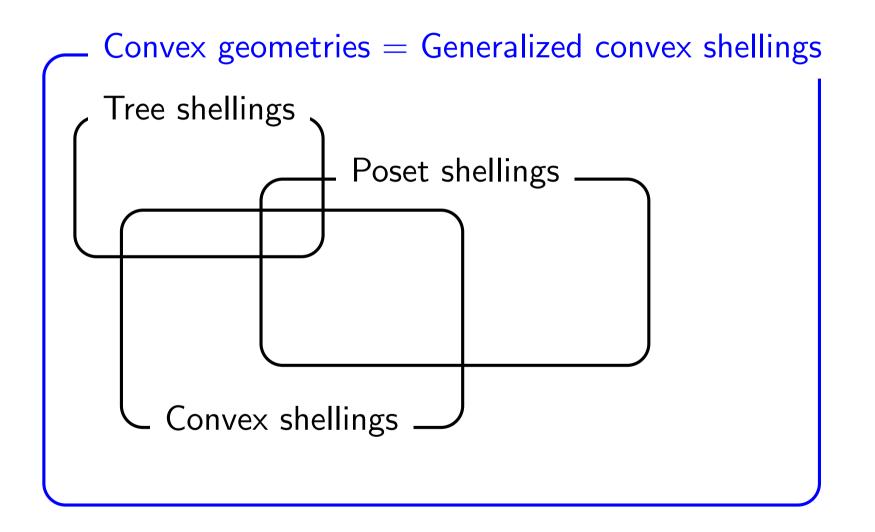
 \mathcal{L} is a convex geometry on Q and called the generalized convex shelling on Q with respect to P.

13

Every convex geometry is isomorphic to some generalized convex shelling.

In other words,

For any convex geometry \mathcal{L} , there exist finite point sets P and Q such that \mathcal{L} is isomorphic to the generalized convex shelling on Q w.r.t. P.



What does the theorem mean?

For oriented matroids and matroids, we have

Topological representation theorems.

15

For convex geometries, we have

Affine representation theorem.

 \implies An intrinsic simplicity of convex geometries

 $16 \sqrt{}$

The proof goes along the following line.

We are given a convex geometry \mathcal{L} .

(1) Construct:

point sets P and Q from \mathcal{L} .

- (2) Show:
 - $\mathcal{L} \cong$ the generalized convex shelling on Q w.r.t. P.

 $\sqrt[17]{\sqrt{}}$

Proof for a special case

To illustrate the proof, we will show a much weaker version.

What we will show

For any poset shelling \mathcal{L} there exist point sets P and Q such that \mathcal{L} is isomorphic to the generalized convex shelling on Q w.r.t. P.

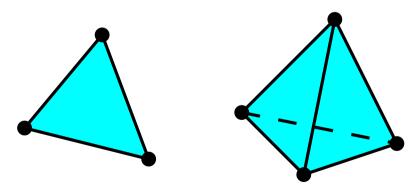
Construction of a point set Q

Given a partially ordered set $\mathcal{P} = (E, \leq)$. Let n := |E|.

 $Construction \ of \ Q$

18

We use the (n - 1)-dimensional space \mathbb{R}^{n-1} . For each $e \in E$, put a point q(e) such that $\{q(e) : e \in E\}$ is affinely independent, $(\operatorname{conv}(\{q(e) : e \in E\}) \text{ is an } (n - 1)\text{-simplex}).$



Let $Q = \{q(e) : e \in E\}.$

 $\frac{19}{1}$

Construction of a point set P

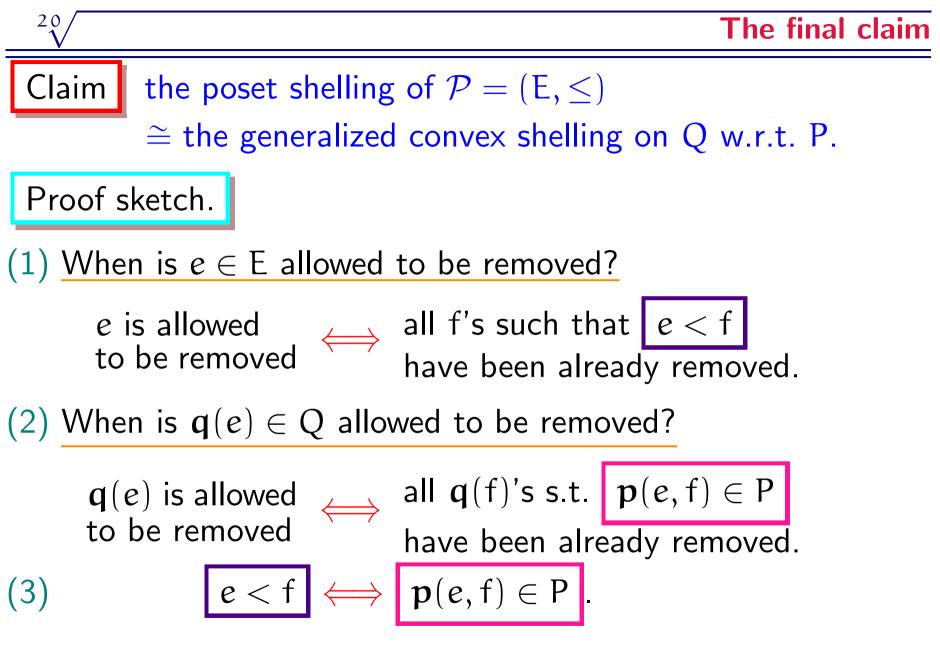
Given a partially ordered set $\mathcal{P} = (E, \leq)$. Let n := |E|.

Construction of P

For each $e_1, e_2 \in E$ such that $e_1 < e_2$, Put a point $\mathbf{p}(e_1, e_2)$ such that $\mathbf{q}(e_1) = \frac{\mathbf{p}(e_1, e_2) + \mathbf{q}(e_2)}{2}$.

$$\begin{array}{c} \mathbf{p}(e_1, e_2) \\ \bullet - - \bullet - \bullet \\ \mathbf{q}(e_1) \quad \mathbf{q}(e_2) \end{array}$$

Let $P = \{p(e_1, e_2) : e_1, e_2 \in E, e_1 < e_2\}.$



 $\frac{21}{\sqrt{}}$

The final slide

What was our theorem??

Our Theorem

Every convex geometry is isomorphic to some generalized convex shelling.

This theorem is expected to be useful for a lot of problems in convex geometries.

 \implies Opens a new research direction!

Based on our theorem...

- Hachimori & Nakamura
 - Consider a certain clutter associated with a convex geometry
 - Characterized the 2-dim. generalized convex shellings with MFMC clutters.
- 🕨 Okamoto
 - Study the local topology of a certain simplicial complex associated with a convex geometry (conjectured by Edelman & Reiner '00)
 - Solved the conjecture for 2-dim. generalized convex shellings.