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Abstract

Several works have indicated the relationships between polynomially solvable com-
binatorial optimization problems and the core non-emptiness of cooperative games
associated with them, and between intractable combinatorial optimization problems
and the hardness of the problem to decide the core non-emptiness of the associated
games. In this paper, we study the core of a traveling salesman game, which is associ-
ated with the traveling salesman problem. First, we show that in general the problem
to test the core non-emptiness of a given traveling salesman game is NP-hard. This
corresponds to the NP-hardness of the traveling salesman problem. Second, we show
that the core of a traveling salesman game is non-empty if the distance matrix is a
symmetric Monge matrix, and also that a traveling salesman game is submodular (or
concave) if the distance matrix is a Kalmanson matrix. These correspond to the fact
that the Monge property and the Kalmanson property are polynomially solvable special
cases of the traveling salesman problem.

Key words. Cooperative game; Core; Traveling salesman; Polynomially solvable
case

1 Introduction

1.1 Background — combinatorial optimization games

Several works have indicated the relationship between polynomially solvable combinatorial
optimization problems and the core non-emptiness of cooperative games associated with
them. Even the first example in the history of combinatorial optimization games, due to
Shapley–Shubik [62], fitted into this framework. They introduced the assignment games
[62], which are derived from the assignment problem (or the maximum weighted matching
problem on bipartite graphs), and showed that the core of an assignment game is always non-
empty. Corresponding to this, the assignment problem can be solved in polynomial time.
The first polynomial time algorithm is due to Kuhn [44] (which is called the Hungarian
method) and other algorithms can be found in a textbook of combinatorial optimization
(like Korte–Vygen [42]). Another early example is a minimum cost spanning tree game by
Bird [3], which is based on the minimum cost spanning tree problem. It was shown that every
minimum cost spanning tree game has a non-empty core, by constructing an explicit vector
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Zürich, Switzerland
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belonging to the core [3, 29]. Again, corresponding to this, the minimum cost spanning
tree problem can be solved in polynomial time by the algorithms, for example, due to
Bor̊uska [51], Kruskal [43] and Prim [59]. (A textbook of combinatorial optimization like
Korte–Vygen [42] provides a further account.)

In the proof of the core non-emptiness of an assignment game by Shapley–Shubik [62],
it was a key observation that the linear programming relaxation of the ordinary integer pro-
gramming formulation of the assignment problem always has an integral optimal solution.
In fact, the core of an assignment game is characterized as the set of optimal solutions of the
dual of the linear programming relaxation. Extending this result, Deng–Ibaraki–Nagamochi
[12] gave a necessary and sufficient condition for maximum packing games and minimum
covering games to have non-empty cores. It says that the linear programming relaxation of
a maximum packing problem (and a minimum covering problem) has an integral optimal
solution if and only if the associated game has a non-empty core, and if so the core is char-
acterized by the set of optimal solutions of the dual of the linear programming relaxation. It
gives rise to good characterizations for the core non-emptiness of some combinatorial opti-
mization games such as maximum matching games, minimum vertex cover games, maximum
independent set games, etc. Similar results based on linear programming duality were shown
for other kinds of games as well. For facility location games, Kolen [40] showed the core of
an uncapacitated facility location game is non-empty if and only if the linear programming
relaxation has an integral optimal solution (see also [41]). Chardaire [6] generalized Kolen’s
results to some sorts of capacitated facility location games, and Goemans–Skutella [26] char-
acterized the more generalized facility location games with non-empty cores, including the
results by Kolen [40] and Chardaire [6]. (Note that a facility location game studied by these
papers [6, 26, 40] is different from a location game of Tamir [66] and of Curiel [8].) For
partition games, Faigle–Kern [18] proved that the core is non-empty if and only if the linear
programming relaxation of the corresponding partition problem has an integral optimal so-
lution. Moreover, Granot–Hamers–Tijs [28] investigated the core non-emptiness of delivery
games in relation with the structures of the underlying graphs. In the books by Bilbao [2]
and by Curiel [8], we can find a lot of results and properties of cooperative games associated
with combinatorial optimization problems, which we may call combinatorial optimization
games.

On the other hand, some papers have indicated the relationship between intractable
combinatorial optimization problems and the hardness of the problem to test the core
non-emptiness of cooperative games associated with them. For example, Deng–Ibaraki–
Nagamochi [12] showed that testing the core non-emptiness of a minimum coloring game
is NP-complete; Matsui [48] showed that testing the core non-emptiness of a bin packing
game is NP-complete; Goemans–Skutella [26] showed that testing the core non-emptiness of
a facility location game is NP-complete. Notice that Deng–Ibaraki–Nagamochi [12] showed
that for a minimum vertex cover game and a maximum independent set game, we can test
the core non-emptiness in polynomial time, while the minimum vertex cover problem and
the maximum independent set problem are known to be NP-hard. Therefore, it is not al-
ways the case that, for a class of cooperative games arising from an NP-hard optimization
problem, testing the core non-emptiness is hard. Note that Deng–Papadimitriou [13] also
discussed cooperative games from the computational (or algorithmic) point of view, not only
for the cores but also for other kinds of solution concepts.

1.2 Traveling salesman games

In this paper, we will study traveling salesman games, introduced by Potters–Curiel–Tijs
[58] from the viewpoint of Section 1.1. In the literature, some of the properties of traveling
salesman games were discussed. Tamir [65] showed that a metric traveling salesman game
with at most four players always has a non-empty core, and that there exists a metric
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traveling salesman game with six players such that the core is empty. Furthermore, Faigle–
Fekete–Hochstättler–Kern [16] provided an instance of a traveling salesman game in the
2-dimensional Euclidean space with six players such that the core is empty. On the other
hand, Kuipers [45] showed that a metric traveling salesman game with five players always
has a non-empty core. Also, Potters–Curiel–Tijs [58] gave an example of an asymmetric
traveling game with four players which has an empty core, and provided some conditions for
an asymmetric traveling salesman game to have a non-empty core. In other papers [8, 65],
we can find other conditions for a traveling salesman game to have a non-empty core. On
the other hand, approximation of the core of a traveling salesman game was discussed by
Faigle–Fekete–Hochstättler–Kern [16] and Faigle–Kern [17].

Stimulated by a sort of the vehicle routing problems, Herer [31] initiated the study of the
underlying graph structure which always yields submodular traveling salesman games. Such
graphs are called naturally submodular. (The more precise definition will be given in Section
6.5.5.) Herer–Penn [32] characterized undirected graphs which are naturally submodular,
and Granot–Granot–Zhu [27] characterized directed graphs and bidirected graphs which
are naturally submodular. In fact, submodularity, which is also called concavity, is an
important concept in cooperative game theory. First of all, submodularity implies core
non-emptiness [61]. In addition, submodularity has other good properties: for example,
the Shapley value is the barycenter of the core [61]; the core is a unique von Neumann–
Morgenstern solution [61]; the bargaining set coincides with the core and the kernel coincides
with the nucleolus [47]; the τ -value can be calculated in polynomial time [67]; the nucleolus
can be calculated in polynomial time [19, 46]. Besides, submodularity plays an important
role in the fields of network flows and combinatorial optimization. Fujishige [23] provides a
survey of submodular-type optimization problems, and Murota [50] gives a further account
on this topic.

1.3 Contributions of this paper

In this paper, we will show that in general the problem to test the core non-emptiness of
a given traveling salesman game is NP-hard. This corresponds to the NP-hardness of the
traveling salesman problem. Next, we will provide some conditions for a symmetric traveling
salesman game to have a non-empty core, which are related to polynomially solvable cases
of the traveling salesman problems. First, we will show that the core of a traveling salesman
game is always non-empty if the distance matrix is a symmetric Monge matrix. It is known
that if the distance matrix is an (asymmetric) Monge matrix then the traveling salesman
problem can be solved in linear time in the number of cities [55] while in general the traveling
salesman problem is NP-hard already for the 2-dimensional Euclidean case [54]. Second,
we will show a traveling salesman game is always submodular if the distance matrix is a
Kalmanson matrix. The Kalmanson property also yields a polynomially solvable special
class of the traveling salesman problem [38].

It is known that Monge matrices are related with polynomially solvable cases for com-
binatorial optimization problems other than the traveling salesman problem, which was
surveyed by Burkard–Klinz–Rudolf [5]. On the other hand, there are many other polynomi-
ally solvable cases of traveling salesman problems. They were surveyed in [4, 25], and some
recent results appeared in [1, 14, 35, 36, 37, 52], etc.

1.4 Organization

This paper is organized as follows. The next section is devoted to some definitions and
basic properties, and our results are described again in a more formal manner. In Sections
3–5, we will provide the proofs of our results. Concluding remarks are provided in the final
section.
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2 Definitions and results

Let N0 = {0, 1, . . . , n} and an N0×N0-matrix D be given. We treat N0 as a set of cities and
D as the distance matrix. We assume that the diagonal components of D are all zero and
the non-diagonal components of D are all positive, and in this paper we will call a matrix
D a distance matrix if D satisfies these assumptions. The (i, j)-component of D is denoted
by d[i, j]. Note that possibly a distance matrix D does not satisfy the triangle inequality:
d[i, j]+d[j, k] ≥ d[i, k] for all i, j, k ∈ N0. The traveling salesman problem (TSP, for short) is
the problem to find a shortest tour around the cities in N0 with respect to a given distance
matrix D; more formally, to find a tour τ on N0 to

minimize
n∑

i=0

d[i, τ(i)], (1)

where τ(i) denotes the successor of i. We denote the k-th successor and the k-th predecessor
of i ∈ N0 in the tour τ by τk(i) and τ−k(i), respectively. A tour τ is sometimes denoted by
τ = 〈0, τ(0), τ2(0), . . . , τn(0)〉.

Let N = N0 \ {0} = {1, 2, . . . , n} and D be an N0 ×N0 distance matrix. We define a
function cD : 2N → R as follows. For S ⊆ N , cD(S) is the total distance of a shortest tour
around the cities in S ∪ {0} with respect to D. Notice that cD(∅) = 0. We call the pair
(N, cD) a traveling salesman game. In terminology of cooperative game theory, N is called
the set of players and cD is the characteristic function. In this paper, when we consider
traveling salesman games, we always assume that the distance matrix D is symmetric, i.e.,
d[i, j] = d[j, i] for all i, j ∈ N0, unless stated otherwise. A traveling salesman game arises
from the following cost allocation problem, originated in Fishburn–Pollak [21]. A professor
has visited, starting from his home institute 0, the universities 1, 2, . . . , n which invited him
and after the visits he has returned to his home. The total cost of the trip should be paid
by the inviting universities. The problem is to find a “fair” rule for the allocation of the
total cost among these universities. Stimulated by this example, we sometimes say that the
city 0 ∈ N0 (which is not a player) is the home.

In cooperative game theory, a core is frequently used as a fair allocation rule. For a
traveling salesman game (N, cD), the core is defined as

Core(N, cD) =

{
x ∈ RN


x(N) = cD(N) and
x(S) ≤ cD(S) for all S ⊆ N

}
, (2)

where we use a convention that x(S) =
∑
i∈S x[i] (and x(∅) = 0) for a vector x ∈ RN . See

the chapters [39, 56] for some properties of the core of a cooperative game.
As we can see from the definition, cores can be empty for some cases. This means that

in such cases we cannot find a fair allocation by this rule. Hence, it is important to test the
core non-emptiness of a given traveling salesman game. Our first theorem is a solution to
this algorithmic problem. Here is the theorem.

Theorem 1. Consider a traveling salesman problem on the cities N0 with a symmetric dis-
tance matrix D. Then, the problem to test the core non-emptiness of the traveling salesman
game (N, cD) is NP-hard.

This theorem implies that it is almost impossible to have a good characterization of the
core non-emptiness of a traveling salesman game in terms of distance matrices. So we may
only hope to determine some classes of matrices which give rise to non-empty cores. The
class of Monge matrices is one of such classes.

The Monge property is known as a polynomially solvable special case of TSP, while
TSP is NP-hard even if N0 is the set of points on the 2-dimensional plane and each entry
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Figure 1: A pyramidal tour.

of D is defined as the Euclidean distance between the corresponding two points [54]. An
N0 ×N0 matrix D is a Monge matrix if D satisfies

d[i, k] + d[j, l] ≤ d[i, l] + d[j, k] (3)

for all i < j and k < l. If a matrix D is a Monge matrix, then it is also said to have the
Monge property . Note that a Monge matrix does not need to satisfy the triangle inequality.
As we can observe from the definition of a Monge matrix, the Monge property is dependent
on the order of the indices of a given matrix. To resolve this dependency, we will use a
permuted Monge matrix. An N0×N0 matrix D is called a permuted Monge matrix if there
exists a permutation σ on the indices N0 such that the matrix whose (i, j)-component is
d[σ(i), σ(j)] has the Monge property. Note that we can determine that a given matrix is a
permuted Monge matrix and if so we can find such a permutation which results in a Monge
matrix in O(n2) [9]. See also [5].

It is well-known that Monge matrices are related to some polynomially solvable combi-
natorial optimization problems [5]. The next proposition is a basic result on Monge matrices
and TSP. A tour 〈0, i1, i2, . . . , ir, n, j1, j2, . . . , jn−r−1〉 on N0 is called a pyramidal tour if
i1 < i2 < · · · < ir and j1 > j2 > · · · > jn−r−1. Fig. 1 is an illustration of a pyramidal tour.
As we can see, in a pyramidal tour the cities i1, . . . , ir are visited on the way from the home
0 to n in a monotone manner and the cities j1, . . . , jn−r−1 are visited on the way back from
n to 0 also in a monotone manner.

Proposition 2 (Gilmore et al. [25]). Consider a traveling salesman problem on the cities
N0 with a distance matrix D. If D is a Monge matrix, then there exists a shortest tour which
is pyramidal.

Generally, a shortest pyramidal tour can be found in O(n2) by the dynamic programming
technique [25]. Moreover, Park [55] showed that a shortest pyramidal tour for TSP with a
Monge distance matrix can be found in O(n) time invoking the structure of a Monge matrix.
Therefore, TSP with a permuted Monge distance matrix can be solved in polynomial time.1

Furthermore, for symmetric Monge matrices, Supnick [64] showed the following propo-
sition. For this case, even the concrete “shape” of a shortest tour can be determined. See
also [4].

Proposition 3 (Supnick [64]). Consider a traveling salesman problem on the cities N0

with a distance matrix D. If D is a symmetric Monge matrix, then the tour 〈0, 2, 4, . . . ,
n, . . . , 5, 3, 1〉 is a shortest tour.

Proposition 3 will be useful for proving the next theorem. This theorem relates the
Monge property with the core non-emptiness of a traveling salesman game.

1Note that some past works like [4] say that TSP with a permuted Monge distance matrix is NP-hard.
However, our definition of permuted Monge distance matrix is different from that in Section 4 of [4]. So
there is no contradiction with what we have just described. Actually, in Section 4 of [4] a permuted Monge
matrix can have different permutations on rows and columns, while our permuted Monge matrix must have
the same permutation on rows and columns. You should not be misled; in Section 2 of [4] a permuted Monge
matrix is defined as the same as ours.
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Theorem 4. Consider a traveling salesman problem on the cities N0 = {0, 1, . . . , n} with
a distance matrix D. If D is a symmetric permuted Monge matrix, then the core of the
traveling salesman game (N, cD) is non-empty. Furthermore, an element in the core can be
found in O(n2).

For a traveling salesman game (N, cD) and T ⊆ N , we define the subgame (T, c
(T )
D )

as c
(T )
D (S) = cD(S) for all S ⊆ T . Observe that if the distance matrix is a symmetric

Monge matrix, then every subgame of a traveling salesman game also has a non-empty core.
That is because every submatrix of a Monge matrix is also a Monge matrix and because of
Theorem 4. In cooperative game theory, a game with the property that every subgame has
a non-empty core is called totally balanced . Hence, the discussion above immediately leads
to the following corollary.

Corollary 5. Consider a traveling salesman problem on the cities N0 with a distance matrix
D. If D is a symmetric permuted Monge matrix, then the traveling salesman game (N, cD)
is totally balanced.

We have another property which yields a polynomially solvable case of TSP. That is the
Kalmanson property. Let D be an N0 ×N0 matrix. We call D a Kalmanson matrix if D is
symmetric and fulfills the following: for every i < j < k < l

d[i, j] + d[k, l] ≤ d[i, k] + d[j, l], (4)

d[i, l] + d[j, k] ≤ d[i, k] + d[j, l]. (5)

We also say that D has the Kalmanson property if D is a Kalmanson matrix. Note that
the class of Kalmanson matrices and that of symmetric Monge matrices have no inclusion-
relationship. The following proposition relates Kalmanson matrices to TSP.

Proposition 6 (Kalmanson [38]). Consider a traveling salesman problem on the cities
N0 with a distance matrix D. If D is a Kalmanson matrix, then the tour 〈0, 1, 2, 3, . . . , n〉
is a shortest tour.

We can define permuted Kalmanson matrices similarly to permuted Monge matrices.
Namely, a matrix D is called a permuted Kalmanson matrix if there exists a permuta-
tion σ on the indices N0 such that the matrix whose (i, j)-component is d[σ(i), σ(j)] has
the Kalmanson property. Note that we can determine that a given matrix is a permuted
Kalmanson matrix and if so we can find a permutation which results in a Kalmanson matrix
in O(n2 logn) [7, 10].

There is another important relation between TSP and the Kalmanson property: the
master tour problem. A tour τ on N0 is a master tour if, for any T ⊆ N0, a shortest tour
on T is obtained by removal of the cities not in T from τ . Note that, in particular, a master
tour on N0 itself is a shortest tour on N0. For example, if the cities lie in a convex position
on the plane and the distance is measured by the Euclidean metric, the tour along the
boundary of the convex hull of the cities is a master tour. The master tour problem is the
problem of deciding whether the cities have a master tour with respect to a given distance
matrix. The next proposition states that a master tour exists if and only if the distance
matrix is a permuted Kalmanson matrix.

Proposition 7 (Burkard et al. [4] Dĕıneko et al. [10]). Consider a traveling salesman
problem on the cities N0 with a symmetric distance matrix D. The tour 〈0, 1, 2, . . . , n−1, n〉
is a master tour if and only if D is a Kalmanson matrix.

We will prove the next theorem by using Proposition 6. A traveling salesman game
(N, cD) is submodular or concave if cD(S) + cD(T ) ≥ cD(S ∪ T ) + cD(S ∩ T ) for any
S, T ⊆ N . Submodular games have a bunch of important properties (see Section 1.2).
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Theorem 8. Consider a traveling salesman problem on the cities N0 with a distance matrix
D. Then the traveling salesman game (N, cD) is submodular if D is a permuted Kalmanson
matrix.

Note that submodularity implies total balancedness [61]. Potters [57] shows that if
the cities have a master tour, the (asymmetric) traveling salesman game has a non-empty
core and that for a special subcase the game is submodular. When we concentrate on
the symmetric case, we can find that Theorem 8 is a stronger statement than the above
argument by Potters [57] with help of Proposition 7.

In the subsequent sections, we will prove Theorems 1, 4 and 8. Some additional remarks
will be provided in the final section.

3 Proof of Theorem 1

First we will state the problem more formally.

Problem. Core Non-emptiness of Traveling Salesman Games.

Instance. Cities N0 and an N0 ×N0 symmetric distance matrix D.

Question. Is the core of the traveling salesman game (N, cD) non-empty?

Theorem 1 states the NP-hardness of Core Non-emptiness of Traveling Salesman
Games. To prove that, we use Hamiltonian Path, a famous NP-complete problem.

Problem. Hamiltonian Path.

Instance. A graph G = (V,E).

Question. Does G have a Hamiltonian path, i.e., a path which visits each vertex exactly
once (i.e., a simple spanning path)?

Proof of Theorem 1. We reduce Hamiltonian Path to Core Non-emptiness of Trav-
eling Salesman Games. For a given graph G = (V,E), put N = V = {1, . . . , n} and
N0 = N ∪ {0}. We define an N0 ×N0 symmetric distance matrix D as

d[i, j] =





0 (i = j),

n/(n+ 1) ({i, j} ∈ E, or exactly one of i and j is 0),

2 (otherwise).

Let (N, cD) be a traveling salesman game derived from the cities N0 and the distance
matrix D. We now show that G has a Hamiltonian path if and only if the game (N, cD) has
a non-empty core, which completes the reduction.

First, assume that G has a Hamiltonian path. Then we have cD(N) = n, cD(∅) = 0, and
cD(S) ≥ n(|S|+ 1)/(n + 1) for all S ∈ 2N \ {∅, N}. Define x = (x[1], . . . , x[n]) as x[i] = 1
for all i ∈ N . Since x(N) = n = cD(N) and x(S) = |S| ≤ n(|S|+ 1)/(n+ 1) ≤ cD(S) for all
S ∈ N \ {∅}, We can see that x belongs to the core.

Next, assume that G has no Hamiltonian path. Let

τ = 〈0, τ(0), τ2(0), . . . , τn(0)〉

be a shortest tour on N0. For the convenience, let us assume that τ i(0) = i without loss of
generality. We define a subgraph G̃ = (N, Ẽ) of G as Ẽ = E ∩ {{i, i+ 1} : i ∈ V }. Namely
Ẽ is the set of edges of G which appear in the tour τ . Let P be the vertices of a longest path
in G̃ and l and m be the endpoints of P , where l < m. Since G has no Hamiltonian path
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and G̃ is a subgraph of G, G̃ has no Hamiltonian path either. This implies that P 6= N ,
namely l 6= 1 or m 6= n holds. Also we have

cD(N) = d[0, 1] +
n−1∑

i=1

d[i, i+ 1] + d[n, 0]

(clearly from the assumption that τ i(0) = i) and

cD(P ) = d[0, l] +

m−1∑

i=l

d[i, i+ 1] + d[m, 0]

(since the distances involved in this expression are all n/(n+ 1) by the choice of P ).

Now, we claim the following.

Claim 9. It holds that cD(P ) < cD(N)− cD(N \ P ).

Proof of Claim 9. We distinguish two cases.

Case 1: Both l 6= 1 and m 6= n hold. Fig. 2 illustrates the situation.

Since P is a longest path in G̃, we have d[l − 1, l] = d[m,m+ 1] = 2. Consider a tour
τ ′ = 〈0, 1, . . . , l − 1,m+ 1, . . . , n〉 on (N \ P ) ∪ {0}. Then we have

cD(N \ P ) ≤ the total distance of the tour τ ′

= d[0, 1] +
l−2∑

i=1

d[i, i+ 1]

+d[l − 1,m+ 1] +
n−1∑

i=m+1

d[i, i+ 1] + d[n, 0]

=

(
d[0, 1] +

n−1∑

i=1

d[i, i+ 1] + d[n, 0]

)

−
(
d[0, l] +

m−1∑

i=l

d[i, i+ 1] + d[m, 0]

)

+d[0, l] + d[m, 0]− d[l − 1, l]− d[m,m+ 1]

+d[l − 1,m+ 1]

= cD(N)− cD(P ) + 2
n

n+ 1
− 2− 2 + d[l − 1,m+ 1]

≤ cD(N)− cD(P ) + 2
n

n+ 1
− 2− 2 + 2

< cD(N)− cD(P ).

Thus, we have cD(P ) < cD(N)− cD(N \ P ) as desired.

Case 2: Either l = 1 or m = n holds, but not both.

Without loss of generality, we assume that l = 1 holds. (If not, we turn τ in the
reverse order to make l = 1 hold.) Fig. 3 depicts the situation.

8



0

P

l− 1 m+ 1

ml1 n

Figure 2: Case 1 in the proof of Claim 9

m+ 1l = 1 n

0

P m

Figure 3: Case 2 in the proof of Claim 9

Since P is a longest path in G̃, we have d[m,m + 1] = 2. Consider a tour τ ′ =
〈0,m+ 1,m+ 2, . . . , n〉 on (N \ P ) ∪ {0}. Then we have

cD(N \ P ) ≤ the total distance of the tour τ ′

= d[0,m+ 1] +

n−1∑

i=m+1

d[i, i+ 1] + d[n, 0]

=

(
d[0, 1] +

n−1∑

i=1

d[i, i+ 1] + d[n, 0]

)

−
(
d[0, l] +

m−1∑

i=l

d[i, i+ 1] + d[m, 0]

)

+d[m, 0] + d[0,m+ 1]− d[m,m+ 1]

= cD(N)− cD(P ) + 2
n

n+ 1
− 2

< cD(N)− cD(P ).

Thus, we have cD(P ) < cD(N)− cD(N \ P ) as expected.

In both cases, it holds that cD(P ) < cD(N) − cD(N \ P ). In this way, the claim has been
proved.

Let us go back to the proof of Theorem 1. Now, suppose that the core is non-empty,
i.e., there exists x ∈ RN such that x(N) = cD(N) and x(S) ≤ cD(S) for all S ∈ 2N \ {∅}.
Particularly, we have x(P ) ≤ cD(P ) and x(N \ P ) ≤ cD(N \ P ). Then we obtain

x(N) = x(P ) + x(N \ P ) ≤ cD(P ) + cD(N \ P ) < cD(N),

using Claim 9 at the last inequality. This contradicts the assumption that x(N) = cD(N).
Hence the core is empty. Thus we have finished the reduction.
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4 Proof of Theorem 4.

Now we will give a proof of Theorem 4. In the proof, we will explicitly construct a vector
belonging to the core, and this construction can be done in O(n2).

Proof of Theorem 4. Let D be an N0 ×N0 permuted Monge matrix and assume that N0 is
renumbered by a permutation σ so that D is a Monge matrix. Here, let h = σ−1(0) ∈ N0

be the home. So the set of players is N0 \{h}. Set Nh
0 = N0 \{h} and consider the traveling

salesman game (Nh
0 , cD).

We use the induction in terms of the number of players, i.e., the size of Nh
0 .

Fix a linear order � on Nh
0 . Define the marginal contribution mcD

� [i] of a player i ∈ Nh
0

with respect to a linear order � as

mcD
� [i] = cD(X�(i))− cD(X�(i) \ {i}),

where X�(i) = {j ∈ Nh
0 : j � i}. We treat mcD

� as a vector whose i-th component is mcD
� [i],

and call it the marginal contribution vector with respect to �. Note that i ∈ X�(i) and
mcD
� (Nh

0 ) = cD(Nh
0 ) for any linear order �. (Remember our convention that mcD

� (S) =∑
i∈Sm

cD
� [i] for S ⊆ Nh

0 .)
Now we will construct the marginal contribution vector with respect to a suitable linear

order and will show that this vector belongs to the core. For a Monge matrix, we can
compute cD(S) for any S ⊆ Nh

0 in polynomial time, hence this gives rise to a polynomial-
time algorithm to find a vector in the core. (The detail will be given at the end of the
proof.)

Take a linear order � on Nh
0 determined as h − 1 � h − 2 � · · · � 1 � 0 � h + 1 �

h + 2 � · · · � n, and consider the marginal contribution vector mcD
� with respect to this

order.
As the base case of our induction, we can easily verify that mcD

� belongs to the core
when n = 1.

As the induction hypothesis, we assume that the marginal contribution vector mcD
� with

respect to this order belongs to the core when |Nh
0 | < n. Now we show that this vector

belongs to the core when |Nh
0 | = n.

Since mcD
� is a marginal contribution vector, we have mcD

� (Nh
0 ) = cD(Nh

0 ). Hence it

suffices to show that mcD
� (S) ≤ cD(S) for every S ⊆ Nh

0 .
We distinguish two cases.

Case 1: h = n.

From the induction hypothesis, we have mcD
� (S) ≤ cD(S) for S ⊆ Nh

0 \ {0}. So it

suffices to show that mcD
� (S ∪ {0}) ≤ cD(S ∪ {0}) for S ⊆ Nh

0 \ {0}.
Here, from the induction hypothesis and the definition of the marginal contribution,
we have mcD

� (S ∪ {0}) = mcD
� (S) + mcD

� [0] ≤ cD(S) + mcD
� [0] = cD(S) + cD(Nh

0 ) −
cD(Nh

0 \ {0}). Moreover, by Proposition 3 and the appropriate choice of pyramidal
tours, we have cD(Nh

0 ) − cD(Nh
0 \ {0}) = d[0, 1] + d[0, 2]− d[1, 2] and cD(S ∪ {0})−

cD(S) = d[0, i1] + d[0, i2] − d[i1, i2], where S is represented as {i1, i2, . . . , is} with
i1 < i2 < · · · < is. Therefore, what we want to show is now replaced to d[0, i1] +
d[0, i2]− d[i1, i2]− d[0, 1]− d[0, 2] + d[1, 2] ≥ 0.

We consider the following four subcases.

Case 1-1: i1 = 1 and i2 = 2.

We have d[0, i1] + d[0, i2]− d[i1, i2]− d[0, 1]− d[0, 2] + d[1, 2] = d[0, 1] + d[0, 2]−
d[1, 2]− d[0, 1]− d[0, 2] + d[1, 2] = 0.
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Case 1-2: i1 = 1 and i2 > 2.

We have d[0, i1] + d[0, i2]− d[i1, i2]− d[0, 1]− d[0, 2] + d[1, 2] = d[0, 1] + d[0, i2]−
d[1, i2] − d[0, 1]− d[0, 2] + d[1, 2] = d[0, i2] − d[1, i2] − d[0, 2] + d[1, 2] ≥ 0, using
the Monge property of D.

Case 1-3: i1 = 2 and i2 > 2.

We have d[0, i1] + d[0, i2]− d[i1, i2]− d[0, 1]− d[0, 2] + d[1, 2] = d[0, 2] + d[0, i2]−
d[2, i2]− d[0, 1]− d[0, 2] + d[1, 2] = d[0, i2]− d[2, i2]− d[0, 1] + d[1, 2] = d[0, i2]−
d[2, i2]− d[0, 1] + d[2, 1] ≥ 0, using the Monge property and the symmetry of D.

Case 1-4: i1 > 2 and i2 > i1.

We have d[0, i1] + d[0, i2]− d[i1, i2]− d[0, 1]− d[0, 2] + d[1, 2] = (d[0, i1] + d[1, 2]−
d[0, 2]− d[1, i1]) + (d[1, i1] + d[0, i2]− d[0, 1]− d[i1, i2]) ≥ 0 + (d[i1, 1] + d[0, i2]−
d[0, 1]− d[i1, i2]) ≥ 0, using the Monge property and the symmetry of D.

Thus, we are done for Case 1.

Case 2: h < n.

From the induction hypothesis, we have mcD
� (S) ≤ cD(S) for S ⊆ Nh

0 \ {n}. So it

suffices to show that mcD
� (S ∪ {n}) ≤ cD(S ∪ {n}) for S ⊆ Nh

0 \ {n}.
Here, from the induction hypothesis and the definition of the marginal contribution,
we have mcD

� (S ∪ {n}) = mcD
� (S) + mcD

� [n] ≤ cD(S) + mcD
� [n] = cD(S) + cD(Nh

0 ) −
cD(Nh

0 \ {n}). Moreover, by Proposition 3 and the appropriate choice of pyramidal
tours, we have cD(Nh

0 ) − cD(Nh
0 \ {n}) = d[n − 2, n] + d[n − 1, n] − d[n − 2, n − 1]

and cD(S ∪ {n}) − cD(S) = d[is−1, n] + d[is, n] − d[is−1, is], where S is represented
as {i1, i2, . . . , is} with i1 < i2 < · · · < is. Therefore, what we want to show is now
replaced to d[is−1, n]+d[is, n]−d[is−1, is]−d[n−2, n]−d[n−1, n]+d[n−2, n−1] ≥ 0.

We consider the following four subcases.

Case 2-1: is = n− 1 and is−1 = n− 2.

We have d[is−1, n]+d[is, n]−d[is−1, is]−d[n−2, n]−d[n−1, n]+d[n−2, n−1] =
d[n−2, n]+d[n−1, n]−d[n−2, n−1]−d[n−2, n]−d[n−1, n]+d[n−2, n−1] = 0.

Case 2-2: is = n− 1 and is−1 < n− 2.

We have d[is−1, n]+d[is, n]−d[is−1, is]−d[n−2, n]−d[n−1, n]+d[n−2, n−1] =
d[is−1, n] + d[n− 1, n]− d[is−1, n− 1]− d[n− 2, n]− d[n− 1, n] + d[n− 2, n− 1] =
d[is−1, n] − d[is−1, n − 1] − d[n − 2, n] + d[n − 2, n − 1] ≥ 0, using the Monge
property of D.

Case 2-3: is = n− 2 and is−1 < n− 2.

We have d[is−1, n]+d[is, n]−d[is−1, is]−d[n−2, n]−d[n−1, n]+d[n−2, n−1] =
d[is−1, n] + d[n− 2, n]− d[is−1, n− 2]− d[n− 2, n]− d[n− 1, n] + d[n− 2, n− 1] =
d[is−1, n] − d[is−1, n − 2] − d[n − 1, n] + d[n − 1, n − 2] ≥ 0, using the Monge
property and the symmetry of D.

Case 2-4: is < n− 2 and is−1 < is.

We have d[is−1, n]+d[is, n]−d[is−1, is]−d[n−2, n]−d[n−1, n]+d[n−2, n−1] =
(d[is−1, n] + d[n − 1, is] − d[is−1, is] − d[n − 1, n]) + (d[is, n] + d[n − 2, n − 1] −
d[is, n− 1]− d[n− 2, n]) ≥ 0, using the Monge property and the symmetry of D.

Thus, we are done for Case 2 as well, and we can conclude that mcD
� belongs to the core.

Now we will show that mcD
� can be computed in O(n2). An algorithm will look as follows.

1. First, find a permutation σ such that the matrix resulting from σ is a permuted Monge
matrix. This can be done in O(n2) [5, 9].
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2. Next, compute cD(X�(i)) for each i ∈ Nh
0 . Each of these values is the optimal value

for an instance of TSP with the symmetric Monge property. In each instance we just
need to look up at most n+ 1 entries of D due to Proposition 3. In total, it requires
O(n2).

Therefore, in total, this algorithm runs in O(n2) + O(n2) = O(n2).

5 Proof of Theorem 8.

In this section we prove Theorem 8. The proof is similar to that of Theorem 4. First, notice
that the submodularity of cD is equivalent to the following condition: for all S ⊆ N such
that |S| ≥ 2 and distinct i, j ∈ S

cD(S \ {i}) + cD(S \ {j}) ≥ cD(S) + cD(S \ {i, j}).

We use this fact in order to shorten the proof.

Proof of Theorem 8. Similarly to the proof of Theorem 4, we assume that N0 is renumbered
by a permutation σ so thatD is a Kalmanson matrix. Here, let h = σ−1(0) ∈ N0 be the home
and regardNh

0 = N0\{h} as the set of the players. Choose arbitrarily S = {i1, . . . , is} ⊆ Nh
0

where i1 < i2 < · · · < is and distinct i, j ∈ S. Assume that i < j without loss of generality.
For k ∈ S, define Pred(k) = max{l ∈ S∪{h} : l < k} and Succ(k) = min{l ∈ S∪{h} : l > k}.

We consider the following three cases. Note that every submatrix of a Kalmanson matrix
is also a Kalmanson matrix.

Case 1: h < i1.

It has three subcases.

Case 1-1: h < i1 ≤ i < Succ(i) < j ≤ is.
By Proposition 6, we can easily see that cD(S \ {i}) + cD(S \ {j}) = cD(S) +
cD(S \ {i, j}).

Case 1-2: h < i1 ≤ i < Succ(i) = j < is.

By Proposition 6, we have (cD(S)+cD(S \{i, j}))− (cD(S \{i})+cD(S \{j})) =
d[i, j] + d[Pred(i), Succ(j)] − d[Pred(i), j] − d[i, Succ(j)] ≤ 0. Here, we used the
Kalmanson property (the inequality (5)).

Case 1-3: h < i1 ≤ i < Succ(i) = j = is.

By Proposition 6, we have (cD(S)+cD(S \{i, j}))− (cD(S \{i})+cD(S \{j})) =
d[i, j] + d[h,Pred(i)] − d[Pred(i), j] − d[h, i] ≤ 0. Here, we used the Kalmanson
property (the inequality (4)).

Case 2: i1 < h < is.

It has two subcases.

Case 2-1: i1 = i < Succ(i) ≤ h ≤ Pred(j) < j = is.

By Proposition 6, we have (cD(S)+cD(S \{i, j}))− (cD(S \{i})+cD(S \{j})) =
d[i, j] + d[Succ(i),Pred(j)] − d[Succ(i), j] − d[i,Pred(j)] ≤ 0. Here, we used the
Kalmanson property (the inequality (5)).

Case 2-2: Other situations from Case 2-1.

By Proposition 6, we can see that cD(S\{i})+cD(S\{j}) = cD(S)+cD(S\{i, j}).

Case 3: is < h.

It has three subcases.
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Case 3-1: i1 ≤ i < Succ(i) < j ≤ is < h.

By Proposition 6, we can see that cD(S\{i})+cD(S\{j}) = cD(S)+cD(S\{i, j}).
Case 3-2: i1 < i < Succ(i) = j ≤ is < h.

By Proposition 6, we have (cD(S)+cD(S \{i, j}))− (cD(S \{i})+cD(S \{j})) =
d[i, j] + d[Pred(i), Succ(j)] − d[Pred(i), j] − d[i, Succ(j)] ≤ 0. Here, we used the
Kalmanson property (inequality (5)).

Case 3-3: i1 = i < Succ(i) = j ≤ is < h.

By Proposition 6, we have (cD(S)+cD(S \{i, j}))− (cD(S \{i})+cD(S \{j})) =
d[i, j] + d[Succ(j), h] − d[j, h] − d[i, Succ(j)] ≤ 0. Here, we used the Kalmanson
property (inequality (4)).

This completes the proof.

6 Summary and concluding remarks

In this paper, we have considered the core of a symmetric traveling salesman game. We have
proved that the problem to test the core non-emptiness of a given traveling salesman game
is NP-hard. Moreover, we have proved that a traveling salesman game is totally balanced if
the distance matrix is a permuted symmetric Monge matrix, and that a traveling salesman
game is submodular if the distance matrix is a permuted Kalmanson matrix.

Now we will make some remarks.

6.1 Non-necessity of the Monge property for total balancedness

We have proved that a traveling salesman game is totally balanced if the distance matrix is
a Monge matrix. However, the Monge property is not necessary for the total balancedness
of traveling salesman games. For example, let N0 = {0, 1, 2, 3} and

D =




0 3 1 3
3 0 3 6
1 3 0 3
3 6 3 0


 .

Here, we have cD({1}) = cD({3}) = 6, cD({2}) = 2, cD({1, 2}) = cD({2, 3}) = 7,
cD({1, 3}) = cD({1, 2, 3}) = 12. Therefore, we can see that this game is totally balanced.
However, D is not a permuted Monge matrix.

6.2 Non-sufficiency of the Monge property for submodularity

We have an example which says that the Monge property does not imply the submodularity
of the traveling salesman game, as follows: N0 = {0, 1, 2, 3, 4} and

D =




0 1 2 3 5
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
5 3 2 1 0



.

Choose S = {1, 2, 4} and T = {1, 3, 4}. Then we have cD(S) = cD(T ) = cD(S ∩ T ) = 8 and
cD(S ∪ T ) = 9. Therefore, cD(S) + cD(T ) < cD(S ∪ T ) + cD(S ∩ T ), but it can be easily
verified that D has the Monge property.
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6.3 Other polynomially solvable special cases

Propositions 2 and 6 say that there exists a shortest tour which is pyramidal for the TSP
with the Monge property or the Kalmanson property. In addition, there are other classes of
distance matrices which derive a similar result. We can find some of them in [1, 4, 14, 25, 52].
So, we might ask if these other classes also yield the associated traveling salesman games with
non-empty cores. For a symmetric TSP, we have symmetric Demidenko matrices and van
der Veen matrices as polynomially solvable cases, for example. A matrix D is a symmetric
Demidenko matrix if D is symmetric and satisfies for any i < j < j + 1 < l

d[i, j] + d[j + 1, l] ≤ d[i, j + 1] + d[j, l]. (6)

Similarly, a symmetric matrix D is a van der Veen matrix if for any i < j < j + 1 < l

d[i, j] + d[j + 1, l] ≤ d[i, l] + d[j, j + 1]. (7)

Consider a symmetric TSP on the cities N0 with a symmetric distance matrix D. If D is
a symmetric Demidenko matrix, then there exists a shortest tour which is pyramidal [11].
Also, if D is a van der Veen matrix, then there exists a shortest tour which is pyramidal [68].
Here we remark that there exists an instance of traveling salesman games with a symmetric
Demidenko matrix or a van der Veen matrix such that the core is empty. Here is such an
instance: N0 = {0, 1, 2, 3} and

D =




0 1 1 1
1 0 3 3
1 3 0 3
1 3 3 0


 .

We can see that D is symmetric and satisfies the conditions (6) and (7). So D is a symmetric
Demidenko matrix and also a van der Veen matrix. We now show that D implies core-
emptiness. Suppose that the core is non-empty, that is, we have a vector x ∈ R3 such
that x({1, 2, 3}) = cD({1, 2, 3}) and x(S) ≤ cD(S) for all S ⊆ {1, 2, 3}. We can observe
that cD({1}) = 2, cD({2, 3}) = 5 and cD({1, 2, 3}) = 8. Therefore, x({1, 2, 3}) = x({1}) +
x({2, 3}) ≤ cD({1})+cD({2, 3}) = 2+5 < 8 = cD({1, 2, 3}), which contradicts x({1, 2, 3}) =
cD({1, 2, 3}). Hence, the core is empty.

6.4 Relationship with the prize-collecting traveling salesman prob-
lem

As a consequence of Theorem 8, we can see that the Kalmanson property forms a poly-
nomially solvable case of the prize-collecting traveling salesman problem. Let N0 be the
cities and D be an N0 × N0 distance matrix. In addition, we have a non-negative vector
p ∈ RN which represents a reward or a prize associated with each city. Let (N, cD) be a
traveling salesman game. A prize-collecting traveling salesman problem is the problem to
find a subtour starting from 0 which maximizes the sum of the prizes on the visited cities
minus the total length of the subtour; more formally, to find max{p(S)− cD(S) : S ⊆ N},
where p(S) =

∑
i∈S p[i]. Define a function g : 2N → R as g(S) = cD(S) − p(S) for every

S ∈ 2N . Then the problem is equivalent to −min{g(S) : S ⊆ N}. If D is a permuted
Kalmanson matrix, then cD is submodular (Theorem 8), therefore g is also submodular. So
a minimizer of g can be obtained by an algorithm for the submodular function minimization
problem. See [30, 33, 34, 60] for algorithms to solve the submodular function minimization
problem in strongly polynomial time. Algorithms for the submodular function minimization
problem are surveyed by Fleischer [22], and Fujishige [24].
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6.5 Open problems

Here, we will state some open problems related to the work in this paper.

6.5.1 The asymmetric Monge property

In this paper, we have proved that a traveling salesman game with the symmetric Monge
property has a non-empty core. So a natural question is about the asymmetric case. We
did not know that a traveling salesman game with the asymmetric Monge property has a
non-empty core or not.

6.5.2 Characterizations of totally balanced and submodular traveling salesman
games

Another open problem is to characterize totally balanced traveling salesman games or sub-
modular traveling salesman games in terms of distance matrices. Possibly, the decision
problems like “is a given traveling salesman game totally balanced?” or “is a given traveling
salesman game submodular?” are intractable, which implies that the good characterizations
are beyond reach. For a Steiner tree game (which is also called a minimum cost spanning
network game) introduced by Megiddo [49], Fang–Cai–Deng [20] proved that deciding the
total balancedness of a given Steiner tree game is NP-hard. This is the only known re-
sult on hardness of deciding the total balancedness of a class of combinatorial optimization
games. Furthermore, as far as the author knows, there is no hardness result on deciding
the submodularity (or the supermodularity) of a class of combinatorial optimization games.
Note that the supermodularity of assignment games is characterized by Solymosi–Raghavan
[63], and the submodularity of minimum coloring games and minimum vertex cover games
is characterized by Okamoto [53].

6.5.3 Testing membership in the core

Faigle–Fekete–Hochstättler–Kern [15] studied the complexity of testing membership in the
core of minimum cost spanning tree games and showed that this problem is coNP-complete.
Also, Fang–Cai–Deng [20] showed that testing membership in the core of Steiner tree games
with non-empty cores is coNP-hard. For us, how about testing membership in the core of
traveling salesman games? Even in the general case we do not know the complexity. To be
precise, we will state what is the problem exactly.

Problem. Testing Membership in the Core of Traveling Salesman Games.

Instance. Cities N0, an N0×N0 distance matrix D and a vector x ∈ RN satisfying x(N) =
cD(N).

Question. Does x belong to the core of the traveling salesman game (N, cD)?

We leave the complexity issue of this problem as an open problem.

6.5.4 Core non-emptiness for the metric case

As Theorem 1, we proved that deciding the core non-emptiness of a given traveling salesman
game is NP-hard. However, the reduction in the proof was not adapted to the metric case
(in which the distance matrix satisfies the triangle inequality) or the 2-dimensional Euclidean
case. It is very plausible that the metric case and the 2-dimensional Euclidean case are also
NP-hard. So, we will describe that as a conjecture.

Conjecture 10. The problem of testing the core non-emptiness of a given metric traveling
salesman game is NP-hard. This is NP-hard even for the 2-dimensional Euclidean case.
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6.5.5 Naturally balanced and naturally totally balanced graphs

Herer [31], Herer–Penn [32] and Granot–Granot–Zhu [27] studied the underlying graph
structure which always yields a submodular traveling salesman game. This kind of graphs
are called naturally submodular. So, it is interesting to investigate “naturally balanced”
graphs or “naturally totally balanced” graphs. To state a problem precisely, we will give the
definitions. We are given a graph G = (V,E) and a nonnegative weight function f : E → R
associated with each edge of the graph. Then, we construct a traveling salesman game
(N, cD) as follows. First we fix a vertex v ∈ V as the home, then N = V \ {v}. Each
entry d[i, j] of the distance matrix D is determined as the length of a shortest path from
i to j in G. The characteristic function cD is defined as explained in Section 2 where the
home is now v. A graph G = (V,E) is called naturally submodular if for any v ∈ V and
any nonnegative weight function f the game (N, cD) is submodular. Natural submodularity
is characterized by Herer–Penn [32] for undirected graphs and by Granot-Granot-Zhu [27]
for directed graphs and bidirected graphs. Analogously we may define a naturally balanced
graph as a graph which yields a traveling salesman game with a non-empty core for any
choice of the home v ∈ V and any nonnegative function f . A naturally totally balanced graph
can be defined similarly. Now, our open problem is to characterize the naturally balanced
graphs and the naturally totally balanced graphs. Note that a similar investigation was
provided for delivery games by Granot–Hamers–Tijs [28].
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