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Abstract

An antimatroid is an accessible union-closed family of subsets of a finite set. A num-
ber of classes of antimatroids are closed under taking minors such as point-search an-
timatroids of rooted (di)graphs, line-search antimatroids of rooted (di)graphs, shelling
antimatroids of rooted trees, shelling antimatroids of posets, etc. The forbidden minor
characterizations are known for point-search antimatroids of rooted (di)graphs, shelling
antimatroids of rooted trees and shelling antimatroids of posets. In this paper, we give
the forbidden minor characterization of line-search antimatroids of rooted digraphs.
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1 Introduction

Various kinds of shelling procedures give rise to a class of combinatorial structures called
antimatroids, which were introduced by Edelman [2] and Jamison-Walder [5]. Antimatroids
can be seen as a combinatorial abstraction of convexity, while matroids can be seen as a
combinatorial abstraction of linear independence. Antimatroids are related to matroids in
that both can be defined by a apparently similar axioms. This close relationship between
antimatroids and matroids provides a lot of interesting properties of antimatroids. For
example, antimatroids can be characterized by a greedy algorithm like matroids [1]. Note
that one of the authors has recently given a greedy-algorithmic characterization of non-
simple antimatroids, which is an extension of antimatroids [9].

Both antimatroids and matroids are subclasses of greedoids introduced by Korte–Lovász
[6]. See [8] for details and various examples of greedoids. In greedoid theory, some classes
are characterized by their forbidden minors: local poset greedoids [7]; undirected branching
greedoids [3, 13], and poset-shelling antimatroids and point-search antimatroids of rooted
(di)graphs [10]. In this paper, we give the forbidden minor characterization for line-search
antimatroids of rooted digraphs.

Note that there are still other antimatroids whose forbidden minor characterizations
have not been known yet; for example, line-search antimatroids of rooted undirected graphs.
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2 Preliminaries

2.1 Antimatroids

Let E be a nonempty finite set, and let F be a family of subsets of E such that

∅ ∈ F , E ∈ F ; (1)

if X ∈ F \ {∅}, then there exists an e ∈ X such that X \ {e} ∈ F ; (2)

if X,Y ∈ F , then X ∪ Y ∈ F . (3)

Then we call (E,F) an antimatroid on E. When there is no risk of confusion, we use F
instead of (E,F). Each element of F is called a feasible set .

For an antimatroid F , a minor F [A,B] is defined as follows:

F [A,B] = {X \A : X ∈ F , A ⊆ X ⊆ B}, (4)

where A,B ∈ F and A ⊆ B. We can easily check that each minor of an antimatroid is also
an antimatroid.

2.2 Point-search antimatroids of rooted digraphs

A digraph G is a pair (V,E) such that V is a nonempty finite set of vertices , and E is a
subset of {(x, y) : x, y ∈ V, x 6= y} called a set of edges. For simplicity, we write xy instead
of (x, y). For an edge xy ∈ E, x is called the tail , and y is called the head .

A path P in G = (V,E) is a sequence of vertices x1x2 · · ·xm with xixi+1 ∈ E for
i = 1, . . . ,m − 1. A path P = x1 · · ·xm is also called a path from x1 to xm. For a path
P = x1 · · ·xm, if there exists an edge xixj ∈ E (i + 1 < j), then the edge xixj is called
a short-cut of the path P . A path without repeated vertices is called elementary . An
elementary path without any short-cuts is called straight .

A rooted digraph is a triple G = (V,E, r) where (V ∪ {r}, E) is a digraph and r is a
specified vertex called the root such that there exists a path from r to every vertex of V . A
path from the root r is called a rooted path. A vertex v is called an atom if rv ∈ E.

For a rooted digraph G = (V,E, r), we consider the following procedure: first we choose
one of the atoms, say v; next we shrink v to the root. If we repeat this procedure until
all vertices are shrunk to the root, then we will obtain a sequence of vertices selected by
the above procedure of shrinking. If we gather all of these sequences, then they form
an antimatroid. Formally, for a rooted digraph G = (V,E, r), we define the point-search
antimatroid PSD(G) as follows:

PSD(G) ={X ⊆ V : every vertex v ∈ X can be reached by (5)

a rooted path in the subgraph induced by X ∪ {r}}.

Note that the class of point-search antimatroids is closed under taking minors.
In a rooted digraph G = (V,E, r), let e = xy ∈ E be an edge of G. Suppose P =

ru1u2 · · ·um to be a straight rooted path such that um−1um = e. Then we say that e is
supported by P , or P supports e. If there is no path supporting e, then e is called a redundant
edge. If a rooted digraph contains no redundant edge, then it is called an irredundant rooted
digraph. Note that redundant edges have no use for defining point-search antimatroids. In
particular, irredundant rooted digraphs have no edge whose head is the root r or an atom.
For a rooted digraph G, define G0 as the rooted digraph such that the redundant edges of
G are deleted, then the point-search antimatroids of G and G0 are the same. Therefore,
without loss of generality, when we consider point-search antimatroids of rooted digraphs,
we only have to handle irredundant ones.
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Figure 1: A rooted digraph and a rooted minor.
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Figure 2: The Heuchenne condition.

Let G = (V,E, r) be a rooted digraph, and PSD(G) be the point-search antimatroid
of G. For A,B ∈ PSD(G) with A ⊆ B, remove V \ B and the edges incident to V \ B
from G, shrink the vertices A to r. Then delete all the redundant edges from the resultant
graph. This procedure gives us an irredundant rooted digraph, which we call a rooted minor
and denote by G[A,B]. Figure 1 shows an example of rooted minors. Note that every
rooted minor of an irredundant rooted digraph is also irredundant. Clearly, the point-search
antimatroid of G[A,B] is equal to the minor PSD(G)[A,B], namely PSD(G[A,B]) =
PSD(G)[A,B]. Furthermore, suppose G′ to be another irredundant rooted digraph. Then
PSD(G) contains a minor isomorphic to PSD(G′) if and only if there exists a rooted minor
of G which is isomorphic to G′.

A multi-digraph H is a quadruple (N,A;h, t) where N is a nonempty finite set of nodes ,
A is a finite set of arcs , and h, t are maps from A to N . For a ∈ A, h(a) ∈ N is called the
head of a, and t(a) ∈ N is the tail of a. A digraph is a special case of multi-digraphs. A
path in H is a sequence of arcs a1 · · · ak such that h(ai) = t(ai+1) for i = 1, . . . , k − 1. If a
path has no repeated arcs, it is called simple.

A multi-digraph H = (N,A;h, t) defines a digraph G = (A,E) by E = {(a, b) : a, b ∈
A, a 6= b, h(a) = t(b)}, which is called the line graph of H . A digraphG is a line graph if there
exists some multi-digraph of which G is the line graph. Syslo [14] gives a polynomial-time
algorithm which decides whether the given digraph is a line graph or not. The algorithm is
based on the following characterization of line graphs [4, 11]:

Proposition 1. Let G = (V,E) be a digraph. G is a line graph if and only if for every
x, y, z, w ∈ V , (x, y), (z, y), (z, w) ∈ E imply (x,w) ∈ E, as shown in Figure 2.

The condition of this proposition is called the Heuchenne condition, or the H-condition,
for short.
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Figure 3: The forbidden minor D5 of point-search antimatroids of rooted digraphs.

A rooted multi-digraph is a quintuple (N,A, r;h, t) where (N ∪ {r}, A;h, t) is a multi-
digraph and r is a specified node called a root such that for every arc there exists a simple
path from r which contains it. A rooted multi-digraph H = (N,A, r′;h, t) also gives its
rooted line graph as follows: add a new node r′′ and insert an arc r′′r′ to H , and construct
the line graph of this resultant multi-digraph, then we have a digraph G whose vertices are
A∪{r} where r is a vertex corresponding to the arc r′′r′. By assumption, it is obvious that
there exists a rooted path to every vertex in G. Hence G is a rooted digraph.

3 The forbidden minor characterization of line-search
antimatroids

In analogy to point-search antimatroids, we define the line-search antimatroid LSD(H) of
a rooted multi-digraph H = (N,A, r;h, t) as follows:

LSD(H) ={X ⊆ A : every arc a ∈ X is contained in a simple (6)

path from r on the subgraph induced by X}.

Note that line-search antimatroids of rooted multi-digraphs are also closed under taking
their minors.

Let G be the rooted line graph of a rooted multi-digraph H . Then the line-search
antimatroid of H coincides with the point-search antimatroid of G. Therefore, the class
of point-search antimatroids of rooted digraphs includes that of line-search antimatroids
of rooted multi-digraphs. It is easily checked that there is a one-to-one correspondence
between line-search antimatroids of rooted multi-digraphs and irredundant rooted digraphs
which satisfy the H-condition.

Point-search antimatroids of rooted digraphs are characterized by the forbidden minor
[10]:

Proposition 2. F is the point-search antimatroid of a rooted digraph if and only if F does
not contain a minor isomorphic to D5 = {∅, {x}, {y}, {x, y}, {x, y, z}}, as shown in Figure
3.

Hence, in order to characterize line-search antimatroids of rooted digraphs, we only need
to characterize point-search antimatroids of irredundant rooted digraphs which violate the
H-condition.
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Figure 4: The rooted digraph A which violates the H-condition.
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Figure 5: The rooted digraph B which violates the H-condition.

For example, the irredundant rooted digraph A = (V (A), E(A), r) defined as

V (A) = {a, b, c, d}, (7)

E(A) = {(r, a), (r, b), (a, c), (b, c), (b, d)}, (8)

which is shown in Figure 4 violates the H-condition.
Additionally, the following three kinds of irredundant rooted digraphs B,Cm,n, Dl,m,n

also violate the H-condition; B = (V (B), E(B), r) is defined as

V (B) = {a, b, c, d}, (9)

E(B) = {(r, a), (r, b), (a, c), (b, c), (b, d), (c, d)}, (10)

which is shown in Figure 5; Cm,n = (V (Cm,n), E(Cm,n), r) is defined as

V (Cm,n) = {a, b, c = x0, d = y0, e, x1, . . . , xm−1, y1, . . . , yn−1}, (11)

E(Cm,n) = {(r, a), (r, b), (a, c), (b, d), (c, x1), (d, y1), (e, c), (e, d), (12)

(x1, x2), . . . , (xm−2, xm−1), (xm−1, e),

(y1, y2), . . . , (yn−2, yn−1), (yn−1, e)},
where m,n ≥ 1, which is shown in Figure 6; Dl,m,n = (V (Dl,m,n), E(Dl,m,n), r) is defined
as

V (Dl,m,n) = {a, b, c = x0, d = y0, e, f = z0, (13)

x1, . . . , xl−1, y1, . . . , ym−1, z1, . . . , zn−1},
E(Dl,m,n) = {(r, a), (r, b), (a, c), (b, d), (c, x1), (d, y1), (e, c), (e, d), (14)

(f, z1), (x1, x2), . . . , (xl−2, xl−1), (xl−1, f),

(y1, y2), . . . , (ym−2, ym−1), (ym−1, f),

(z1, z2), . . . , (zn−2, zn−1), (zn−1, e)},
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Figure 6: The rooted digraph Cm,n (m,n ≥ 1) which violates the H-condition, where the
broken arrows represent arbitrarily long paths.
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Figure 7: The rooted digraph Dl,m,n (l,m, n ≥ 1) which violates the H-condition, where the
broken arrows represent arbitrarily long paths.

where l,m, n ≥ 1, which is shown in Figure 7.

Therefore, it is clear that if G is a rooted line graph then it cannot contain the above
rooted digraphs as its rooted minors. Indeed, it turns out to be sufficient to exclude these
minors to get a rooted line graph.

Theorem 3. Let G be an irredundant rooted digraph. Then, G is a rooted line graph if and
only if G has no rooted minor isomorphic to A, B, Cm,n or Dl,m,n (l,m, n ≥ 1).

Proof. We only need to show the sufficiency. Let G = (V,E, r) be an irredundant rooted
digraph containing four vertices x, y, z, w which violate the H-condition and is minor-minimal
with respect to this property. Let W = {x, y, z, w}.

A vertex a ∈ W is the joint of a straight path P from r to a vertex of W if a is the
first vertex of W along the path P from r. Let T be the set of joints for straight paths in
G. From the assumption, we have T 6= ∅ and there must exist a path supporting each of
the edges xy, zy, zw, which we denote by P , Q, R, respectively. We consider the following
cases according to the size of T .

Case 1. |T | = 1. It is easily checked that this case leads to a contradiction.

Case 2. |T | = 2. This has the following six subcases.

Case 2-1. T = {x, y}. The path Q is not straight since Q must go through x or y. This
is a contradiction.
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Case 2-2. T = {x, z}. A path with the joint x supports the edge xy, and a path with the
joint z supports the edges zy and zw. From the minimality of G, the vertices of G must be
{r, x, y, z, w}. If we consider all the possible edges among them, then we obtain A and B.

Case 2-3. T = {x,w}. Suppose that the path Q goes through x, then the edge xy is
a short-cut. This is a contradiction. Therefore, Q must go through w but not through x.
Moreover, Q is r · · ·w · · · zy since Q does not go through y. If a path with the joint w has
no vertex between r and w, then it is a short-cut of the path R. Therefore, it has an extra
vertex p between r and w, namely the path is rpw, from the minimality of G. Moreover,
the path with the joint x is rx from the minimality of G as a rooted minor. Since the path
R does not go through w, it must go through x. We consider the subcases according to
whether R goes through the edge xy or not.

Case 2-3-1. R goes through xy. R is r · · ·xy · · · z. If there is a common vertex of the
part y · · · z of R and the part w · · · z of Q except for z, then G must contain Dl,m,n as a
subgraph. Otherwise, G must contain Cm,n as a subgraph.

Now we should check that if G has no rooted minor isomorphic to Cm,n and Dl,m,n,
then G must have A or B as its rooted minor, or it leads to a contradiction.

Case 2-3-1-1. Cm,n has extra edges. Refer the definition (11, 12) of Cm,n.

Case 2-3-1-1-1. the edge cd exists. If we shrink a to r and we set a = c and c = x1,
then we can reduce this case to A or B.

Case 2-3-1-1-2. the edge xiyj exists (0 < i < m, 0 < j < n). If we shrink a, b, c, x1,
. . . , xi−1, y0, . . . , yj−2 to r and we set a = xi, b = yj−1, c = xi+1 and d = yj , then we
reduce this case to A or B.

Case 2-3-1-1-3. the edge xie exists. A contradiction since the edge xm−1e is redundant.

Case 2-3-1-2. Dl,m,n has extra edges. We can check similarly to Case 2-3-1-1.

Case 2-3-2. R does not go through xy. Then, we obtain the graphs shown in Figure
8, where I is a path from x to z and J is a path from w to z. In the left case, I and J have
a unique common vertex z, and in the right case they have at least two common vertices.

Now we show that these graphs have A or B as a rooted minor. We consider the left
case. The right case is shown similarly.

Case 2-3-2-1. the length of I is one, and the length of J is also one. If we shrink
p to r, then it is reduced to B.

Case 2-3-2-2. the length of I is one, and the length of J is more than one. Let
J = wj1j2 . . . jhz for h ≥ 1. If we shrink p, w, j1, . . . , jh−1 to r, then it is reduced to B.

Case 2-3-2-3. the length of I is two, and the length of J is one. If we shrink p
and w to r, then it is reduced to A.

Case 2-3-2-4. the length of I is more than two, and the length of J is one. Let
I = xi1i2 . . . ikz for k ≥ 2. If we delete i2, . . . , ik and shrink p and w to r, then it is reduced
to A.
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Figure 8: Case 2-3-2. Broken arrows represent arbitrarily long paths.

Case 2-3-2-5. the lengths of both I and J are more than one. Let I = xi1i2 . . . ikz
for k ≥ 1, and J = wj1 . . . jhz for h ≥ 1. If we delete i2, . . . , ik and shrink p, w, j1, . . . , jh
to r, then it is reduced to A.

Case 2-4. T = {y, w}. From the minimality and the irredundancy of G, the length of
a path with the joint y is two, and let it be rpy. Similarly, the length of a path with the
joint w is two, and let it be rqw. If p = q, then the three edges xy,zy and zw are always
redundant. Therefore, we have p 6= q.

The path Q goes through neither x nor y. Therefore, Q is rqw · · · zy.
The path R does not go through w. Hence, it must go through y. If we delete x, then

it is reduced to Cm,n or Dl,m,n.

Case 2-5. T = {y, z}. The path P does not go through y. Therefore, it must go through
z. Then, it is a contradiction since the edge zy is a short-cut.

Case 2-6. T = {z, w}. Since the path P does not go through z, it must go through w.
From the minimality of G, the length of a path with the joint w is two, and the length of
a path with the joint z is one. Now, we obtain the graph shown in Figure 9. Then, if we
delete the vertices of the path w · · ·x except for w, then it is reduced to A.

Case 3. |T | = 3. This has the following four subcases.

Case 3-1. T = {x, y, z}. The path P has the joint x. Moreover, the paths Q and R have
the joint z. Suppose that the length of a path Y with the joint y is one. Then the edges xy
and zy are redundant. Therefore, the length of Y is more than one, that is, Y = ry1 · · · ykpy
for k ≥ 0. Note that p is contained neither in P nor in Q.

Let P = ru1 · · ·ulx and Q = rv1 · · · vmz for l,m ≥ 0. If we delete p and shrink u1, . . . ,
ul, v1, . . . , vm, y1, . . . , yk to r, then it is reduced to A or B.

Case 3-2. T = {x, y, w}. Suppose that the length of a path Y with the joint y is one.
Then the edges xy and zy are redundant. Therefore, the length of Y is more than one, that
is, Y = ry1 · · · ykpy for k ≥ 0. If we delete x, then {p, y, z, w} is the set of vertices which
violates the H-condition. Therefore, it is reduced to Case 2-3.
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Case 3-3. T = {x, z, w}. The path P has the joint x. Moreover, the paths Q and R have
the joint z. Suppose that the length of a path Y with the joint w is one. Then the edge
zw is redundant. Therefore, the length of Y is more than one, that is, Y = ry1 · · · ykpw for
k ≥ 0. Note that p is contained neither in P nor in Q.

Let P = ru1 · · ·ulx and Q = rv1 · · · vmz for l,m ≥ 0. If we delete p, and shrink u1, . . . ,
ul, v1, . . . , vm, y1, . . . , yk to r, then it is reduced to A or B.

Case 3-4. T = {y, z, w}. The paths Q and R have the joint z. Let Y be the path with
the joint y. Note that the length of Y is more than one. Similarly, let W be the path with
the joint w, then its length is more than one. The path P supporting the edge xy has the
joint w. Let p be the vertex of Y which precedes y and q be the vertex of W which precedes
w. Suppose that p = q, and consider the path P supporting the edge xy. The joint of P is
not y. If the joint of P is z, then the edge zy is a short-cut of P . If the joint of P is w, then
the edge py is a short-cut of P . Therefore, we have p 6= q.

Let Y = ry1 · · · ylpy, W = rw1 · · ·wmqw and Q = rq1 · · · qnz for l,m, n ≥ 0. If we delete
p and x, and shrink y1, . . . , yl, w1, . . . , wm, q1, . . . , qn to r, then it is reduced to A or B.

Case 4. |T | = 4. It is easily checked that this case is reduced to Case 3-1 or Case 3-3.

Theorem 3 directly gives the forbidden minor characterization of line-search antima-
troids of rooted digraphs as below.

Corollary 4. Let F be an antimatroid. Then, F is a line-search antimatroid of a rooted
digraph if and only if F has no minor isomorphic to D5 or the point-search antimatroids of
A, B, Cm,n or Dl,m,n (l,m, n ≥ 1).

Robertson–Seymour [12] have shown the Graph Minor Theorem, that is, in every infinite
set of graphs there are two graphs such that one is a minor of the other. From this theorem,
we conclude that every minor-closed property of graphs can be characterized by finitely many
forbidden minors. But for antimatroids, Theorem 3 implies that there exists an infinite set
of antimatroids such that any of them is not a proper minor of the other one.
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