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Abstract

An antimatroid is an accessible union-closed family of subsets of a finite set. A num-
ber of classes of antimatroids are closed under taking minors such as point-search an-
timatroids of rooted (di)graphs, line-search antimatroids of rooted (di)graphs, shelling
antimatroids of rooted trees, shelling antimatroids of posets, etc. The forbidden minor
characterizations are known for point-search antimatroids of rooted (di)graphs, shelling
antimatroids of rooted trees and shelling antimatroids of posets. In this paper, we give
the forbidden minor characterization of line-search antimatroids of rooted digraphs.

Key Words: Antimatroid, Forbidden minor, Line graph, Line-search antimatroid

1 Introduction

Various kinds of shelling procedures give rise to a class of combinatorial structures called
antimatroids, which were introduced by Edelman [2] and Jamison-Walder [5]. Antimatroids
can be seen as a combinatorial abstraction of convexity, while matroids can be seen as a
combinatorial abstraction of linear independence. Antimatroids are related to matroids in
that both can be defined by a apparently similar axioms. This close relationship between
antimatroids and matroids provides a lot of interesting properties of antimatroids. For
example, antimatroids can be characterized by a greedy algorithm like matroids [1]. Note
that one of the authors has recently given a greedy-algorithmic characterization of non-
simple antimatroids, which is an extension of antimatroids [9].

Both antimatroids and matroids are subclasses of greedoids introduced by Korte-Lovéasz
[6]. See [8] for details and various examples of greedoids. In greedoid theory, some classes
are characterized by their forbidden minors: local poset greedoids [7]; undirected branching
greedoids [3, 13|, and poset-shelling antimatroids and point-search antimatroids of rooted
(di)graphs [10]. In this paper, we give the forbidden minor characterization for line-search
antimatroids of rooted digraphs.

Note that there are still other antimatroids whose forbidden minor characterizations
have not been known yet; for example, line-search antimatroids of rooted undirected graphs.
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2 Preliminaries

2.1 Antimatroids

Let E be a nonempty finite set, and let F be a family of subsets of E such that

0e F.EecF; (1)
if X € F\ {0}, then there exists an e € X such that X \ {e} € F; (2)
it X,)Y € F, then X UY € F. (3)

Then we call (E,F) an antimatroid on E. When there is no risk of confusion, we use F
instead of (F,F). Each element of F is called a feasible set.
For an antimatroid F, a minor F[A, B] is defined as follows:

FIA,B)={X\A: X € F,AC X C B}, (4)

where A, B € F and A C B. We can easily check that each minor of an antimatroid is also
an antimatroid.

2.2 Point-search antimatroids of rooted digraphs

A digraph G is a pair (V, E) such that V is a nonempty finite set of vertices, and F is a
subset of {(x,y) : x,y € V,z # y} called a set of edges. For simplicity, we write zy instead
of (z,y). For an edge xy € E, x is called the tail, and y is called the head.

A path P in G = (V,E) is a sequence of vertices xyxa--- &y, with z;z;41 € E for
i=1,...,m—1. A path P = z1---x,, is also called a path from z; to z,,. For a path
P = 12y, if there exists an edge z;2; € E (i + 1 < j), then the edge z;z; is called
a short-cut of the path P. A path without repeated vertices is called elementary. An
elementary path without any short-cuts is called straight.

A rooted digraph is a triple G = (V, E,r) where (V U {r}, E) is a digraph and r is a
specified vertex called the root such that there exists a path from r to every vertex of V. A
path from the root r is called a rooted path. A vertex v is called an atom if rv € E.

For a rooted digraph G = (V, E, r), we consider the following procedure: first we choose
one of the atoms, say v; next we shrink v to the root. If we repeat this procedure until
all vertices are shrunk to the root, then we will obtain a sequence of vertices selected by
the above procedure of shrinking. If we gather all of these sequences, then they form
an antimatroid. Formally, for a rooted digraph G = (V, E,r), we define the point-search
antimatroid PG p(G) as follows:

PSH(G) ={X CV :every vertex v € X can be reached by (5)
a rooted path in the subgraph induced by X U {r}}.

Note that the class of point-search antimatroids is closed under taking minors.

In a rooted digraph G = (V,E,r), let ¢ = zy € E be an edge of G. Suppose P =
TUIUg - - - Uy tO be a straight rooted path such that w,,—iu,, = e. Then we say that e is
supported by P, or P supports e. If there is no path supporting e, then e is called a redundant
edge. If a rooted digraph contains no redundant edge, then it is called an irredundant rooted
digraph. Note that redundant edges have no use for defining point-search antimatroids. In
particular, irredundant rooted digraphs have no edge whose head is the root r or an atom.
For a rooted digraph G, define Gy as the rooted digraph such that the redundant edges of
G are deleted, then the point-search antimatroids of G and Gy are the same. Therefore,
without loss of generality, when we consider point-search antimatroids of rooted digraphs,
we only have to handle irredundant ones.



Figure 1: A rooted digraph and a rooted minor.
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Figure 2: The Heuchenne condition.

Let G = (V, E,r) be a rooted digraph, and & (G) be the point-search antimatroid
of G. For A,B € PGS,(G) with A C B, remove V' \ B and the edges incident to V' \ B
from G, shrink the vertices A to r. Then delete all the redundant edges from the resultant
graph. This procedure gives us an irredundant rooted digraph, which we call a rooted minor
and denote by G[A, B]. Figure 1 shows an example of rooted minors. Note that every
rooted minor of an irredundant rooted digraph is also irredundant. Clearly, the point-search
antimatroid of G[A, B] is equal to the minor P& (G)[A, B], namely PBES(G[A, B]) =
PS(G)[A, B]. Furthermore, suppose G’ to be another irredundant rooted digraph. Then
PSS (G) contains a minor isomorphic to P&, (G’) if and only if there exists a rooted minor
of G which is isomorphic to G’.

A multi-digraph H is a quadruple (N, A; h, t) where N is a nonempty finite set of nodes,
A is a finite set of arcs, and h,t are maps from A to N. For a € A, h(a) € N is called the
head of a, and t(a) € N is the tail of a. A digraph is a special case of multi-digraphs. A
path in H is a sequence of arcs aq - - - ag such that h(a;) = t(aj4q1) fori=1,... ;k—1. If a
path has no repeated arcs, it is called simple.

A multi-digraph H = (N, A; h,t) defines a digraph G = (4, F) by E = {(a,b) : a,b €
A,a # b, h(a) = t(b)}, which is called the line graph of H. A digraph G is a line graph if there
exists some multi-digraph of which G is the line graph. Syslo [14] gives a polynomial-time
algorithm which decides whether the given digraph is a line graph or not. The algorithm is
based on the following characterization of line graphs [4, 11]:

Proposition 1. Let G = (V, E) be a digraph. G is a line graph if and only if for every
x,y,z,w €V, (x,y),(2,9), (z,w) € E imply (z,w) € E, as shown in Figure 2.

The condition of this proposition is called the Heuchenne condition, or the H-condition,
for short.
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Figure 3: The forbidden minor Ds of point-search antimatroids of rooted digraphs.

A rooted multi-digraph is a quintuple (N, A, r; h,t) where (N U {r}, A;h,t) is a multi-
digraph and r is a specified node called a root such that for every arc there exists a simple
path from 7 which contains it. A rooted multi-digraph H = (N, A,r'; h,t) also gives its
rooted line graph as follows: add a new node r” and insert an arc /v’ to H, and construct
the line graph of this resultant multi-digraph, then we have a digraph GG whose vertices are
AU{r} where r is a vertex corresponding to the arc r"r’. By assumption, it is obvious that
there exists a rooted path to every vertex in G. Hence G is a rooted digraph.

3 The forbidden minor characterization of line-search
antimatroids

In analogy to point-search antimatroids, we define the line-search antimatroid £& p(H) of
a rooted multi-digraph H = (N, A, r; h,t) as follows:

£6p(H) ={X C A:every arc a € X is contained in a simple (6)
path from r on the subgraph induced by X}.

Note that line-search antimatroids of rooted multi-digraphs are also closed under taking
their minors.

Let G be the rooted line graph of a rooted multi-digraph H. Then the line-search
antimatroid of H coincides with the point-search antimatroid of G. Therefore, the class
of point-search antimatroids of rooted digraphs includes that of line-search antimatroids
of rooted multi-digraphs. It is easily checked that there is a one-to-one correspondence
between line-search antimatroids of rooted multi-digraphs and irredundant rooted digraphs
which satisfy the H-condition.

Point-search antimatroids of rooted digraphs are characterized by the forbidden minor
[10]:

Proposition 2. F is the point-search antimatroid of a rooted digraph if and only if F does
not contain a minor isomorphic to Ds = {0, {z},{y}, {z,y},{z, v, 2}}, as shown in Figure
3.

Hence, in order to characterize line-search antimatroids of rooted digraphs, we only need
to characterize point-search antimatroids of irredundant rooted digraphs which violate the
H-condition.
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Figure 4: The rooted digraph A which violates the H-condition.
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Figure 5: The rooted digraph B which violates the H-condition.

For example, the irredundant rooted digraph A = (V(A), E(A),r) defined as
V(4) = A{ab,cd}, (7)
E(A) = {(r,a),(r,b),(a,c),(b,c), (b,d)}, (8)

which is shown in Figure 4 violates the H-condition.
Additionally, the following three kinds of irredundant rooted digraphs B, Cy, n, Dimn
also violate the H-condition; B = (V(B), E(B),r) is defined as

V(B) = {a,b,cd}, (9)
E(B) = {(ra),(rb),(a,c),(b,c),(bd),(c,d)}, (10)
which is shown in Figure 5; Cpp o = (V(Cion), E(C i), ) is defined as
V(Cnn) = {abyc=2x0,d=yo0,6,Z1, . ,Tm—1,Y1s--- ,Yn—1}, (11)
E(Cmn) = {(ra),(r,b),(a,c), (bd),(c,21), (d, 1), (e, ¢), (e, d), (12)
(x1,22), .oy (Tm—2, Tm-1), (Tm—1,€),

(W1, 92), -+ s (Yn—2:Yn-1), WYn-1.€)},

where m,n > 1, which is shown in Figure 6; Djmpn = (V(Dimmn), E(Dimn),r) is defined
as

V(Dlymﬁn) = {a7bac:‘r07d:y0565f = 20, (13)
Tiseer s T1-1,Y1y- -+ s Ym—1,%15- - - azn—l}a
E(Dlﬂn,n) = {(’I“, a)7(r, b),(a,c),(b,d),(c,xl),(d, yl),(€,0)7(67d)7 (14)

(f, 21)7($1,$2)7--- 7($172,$171),($171,f)7
(yla y2>a e (ym72, ym71>, (ymfla f)v

(217 ZQ); sy (Zn—Qa Zn—l)a (Zn—la 6)},



Figure 6: The rooted digraph Cy, ., (m,n > 1) which violates the H-condition, where the
broken arrows represent arbitrarily long paths.

Figure 7: The rooted digraph Dj ,, » (I,m,n > 1) which violates the H-condition, where the
broken arrows represent arbitrarily long paths.

where [, m,n > 1, which is shown in Figure 7.

Therefore, it is clear that if G is a rooted line graph then it cannot contain the above
rooted digraphs as its rooted minors. Indeed, it turns out to be sufficient to exclude these
minors to get a rooted line graph.

Theorem 3. Let G be an irredundant rooted digraph. Then, G is a rooted line graph if and
only if G has no rooted minor isomorphic to A, B, Cpypn 07 Dimn (I,m,n>1).

Proof. We only need to show the sufficiency. Let G = (V, E,r) be an irredundant rooted
digraph containing four vertices x, y, z, w which violate the H-condition and is minor-minimal
with respect to this property. Let W = {z,y, z, w}.

A vertex a € W is the joint of a straight path P from r to a vertex of W if a is the
first vertex of W along the path P from r. Let T be the set of joints for straight paths in
G. From the assumption, we have T # () and there must exist a path supporting each of
the edges zy, zy, zw, which we denote by P, @, R, respectively. We consider the following
cases according to the size of T.

Case 1. |T| =1. It is easily checked that this case leads to a contradiction.
Case 2. |T| =2. This has the following six subcases.

Case 2-1. T = {z,y}. The path @ is not straight since @ must go through = or y. This
is a contradiction.



Case 2-2. T ={x,z}. A path with the joint = supports the edge zy, and a path with the
joint z supports the edges zy and zw. From the minimality of G, the vertices of G must be
{r,x,y,z,w}. If we consider all the possible edges among them, then we obtain A and B.

Case 2-3. T = {z,w}. Suppose that the path @ goes through x, then the edge zy is
a short-cut. This is a contradiction. Therefore, @@ must go through w but not through .
Moreover, Q is r---w- - - zy since @) does not go through y. If a path with the joint w has
no vertex between r and w, then it is a short-cut of the path R. Therefore, it has an extra
vertex p between r and w, namely the path is rpw, from the minimality of G. Moreover,
the path with the joint x is rz from the minimality of G as a rooted minor. Since the path
R does not go through w, it must go through x. We consider the subcases according to
whether R goes through the edge zy or not.

Case 2-3-1. R goes through zy. Risr---xy---z. If there is a common vertex of the
part y---z of R and the part w---z of @) except for z, then G must contain D, as a
subgraph. Otherwise, G must contain C,, , as a subgraph.

Now we should check that if G has no rooted minor isomorphic to C,, , and D »,
then GG must have A or B as its rooted minor, or it leads to a contradiction.

Case 2-3-1-1. C,, , has extra edges. Refer the definition (11, 12) of C,, ,,.

Case 2-3-1-1-1. the edge cd exists. If we shrink a to r and we set a = ¢ and ¢ = z1,
then we can reduce this case to A or B.

Case 2-3-1-1-2. the edge z;y; exists (0 <i<m,0<j<n). Ifweshrink a, b, ¢, z1,
.oy Ti—1, Yo, -+, Yj—2 to T and we set a = x4, b = yj_1, ¢ = 2441 and d = y;, then we
reduce this case to A or B.

Case 2-3-1-1-3. the edge x;e exists. A contradiction since the edge x,,_1e is redundant.
Case 2-3-1-2. D;,, , has extra edges. We can check similarly to Case 2-3-1-1.

Case 2-3-2. R does not go through xy. Then, we obtain the graphs shown in Figure
8, where I is a path from x to z and J is a path from w to z. In the left case, I and J have
a unique common vertex z, and in the right case they have at least two common vertices.

Now we show that these graphs have A or B as a rooted minor. We consider the left
case. The right case is shown similarly.

Case 2-3-2-1. the length of I is one, and the length of J is also one. If we shrink
p to r, then it is reduced to B.

Case 2-3-2-2. the length of I is one, and the length of J is more than one. Let
J =wjija...jnz for h > 1. If we shrink p, w, ji, ..., jn—1 to 7, then it is reduced to B.

Case 2-3-2-3. the length of I is two, and the length of J is one. If we shrink p
and w to 7, then it is reduced to A.

Case 2-3-2-4. the length of I is more than two, and the length of J is one. Let
I = xiyis .. .ixz for k > 2. If we delete io, ... , i, and shrink p and w to 7, then it is reduced
to A.
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Figure 8: Case 2-3-2. Broken arrows represent arbitrarily long paths.

Case 2-3-2-5. the lengths of both I and J are more than one. Let I = xijis...i;2
for kK > 1, and J = wj; ...jpz for h > 1. If we delete s, ... ,i; and shrink p,w, ji,...,Jn
to r, then it is reduced to A.

Case 2-4. T = {y,w}. From the minimality and the irredundancy of G, the length of
a path with the joint y is two, and let it be rpy. Similarly, the length of a path with the
joint w is two, and let it be rqw. If p = ¢, then the three edges ry,zy and zw are always
redundant. Therefore, we have p # q.

The path @ goes through neither « nor y. Therefore, Q is rqw - - - zy.

The path R does not go through w. Hence, it must go through y. If we delete =, then
it is reduced to Ci, r, OF Dy -

Case 2-5. T ={y,z}. The path P does not go through y. Therefore, it must go through
z. Then, it is a contradiction since the edge zy is a short-cut.

Case 2-6. T = {z,w}. Since the path P does not go through z, it must go through w.
From the minimality of G, the length of a path with the joint w is two, and the length of
a path with the joint z is one. Now, we obtain the graph shown in Figure 9. Then, if we
delete the vertices of the path w---x except for w, then it is reduced to A.

Case 3. |T| =3. This has the following four subcases.

Case 3-1. T = {z,y,z}. The path P has the joint . Moreover, the paths @ and R have
the joint z. Suppose that the length of a path Y with the joint y is one. Then the edges zy
and zy are redundant. Therefore, the length of Y is more than one, that is, Y = ry1 - - - yxpy
for £ > 0. Note that p is contained neither in P nor in Q.

Let P=ruy---wzx and Q =rvy -+ - vz for [,m > 0. If we delete p and shrink uq, ...,
U, U1y« -y Umsy Y1, - -+, Yr to 7, then it is reduced to A or B.

Case 3-2. T = {z,y,w}. Suppose that the length of a path Y with the joint y is one.
Then the edges xy and zy are redundant. Therefore, the length of Y is more than one, that
is, Y = ry; - - yxpy for k > 0. If we delete x, then {p,y, z, w} is the set of vertices which
violates the H-condition. Therefore, it is reduced to Case 2-3.
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Figure 9: Case 2-6.

Case 3-3. T'={z,z,w}. The path P has the joint 2. Moreover, the paths @ and R have
the joint z. Suppose that the length of a path Y with the joint w is one. Then the edge
zw is redundant. Therefore, the length of Y is more than one, that is, Y = ry; - - - yxpw for
k > 0. Note that p is contained neither in P nor in Q.

Let P=ruy---wz and Q = vy - - - vz for [, m > 0. If we delete p, and shrink uq, ...,
U, U1y« Um, Y1, - - -, Yi to 7, then it is reduced to A or B.

Case 3-4. T = {y,z,w}. The paths Q and R have the joint z. Let Y be the path with
the joint y. Note that the length of Y is more than one. Similarly, let W be the path with
the joint w, then its length is more than one. The path P supporting the edge xy has the
joint w. Let p be the vertex of Y which precedes y and ¢ be the vertex of W which precedes
w. Suppose that p = ¢, and consider the path P supporting the edge xy. The joint of P is
not y. If the joint of P is z, then the edge zy is a short-cut of P. If the joint of P is w, then
the edge py is a short-cut of P. Therefore, we have p # q.

Let Y =ry;---yipy, W = rwy - - wmqw and Q = rqy - - - gz for [, m,n > 0. If we delete
p and x, and shrink y1, ..., ¥, W1, ..., Wm, q1, - - -, Gn to T, then it is reduced to A or B.

Case 4. |T| =4. It is easily checked that this case is reduced to Case 3-1 or Case 3-3. [

Theorem 3 directly gives the forbidden minor characterization of line-search antima-
troids of rooted digraphs as below.

Corollary 4. Let F be an antimatroid. Then, F is a line-search antimatroid of a rooted
digraph if and only if F has no minor isomorphic to D5 or the point-search antimatroids of
A, B, Coyp 07 Dy (L, m,n > 1).

Robertson—Seymour [12] have shown the Graph Minor Theorem, that is, in every infinite
set of graphs there are two graphs such that one is a minor of the other. From this theorem,
we conclude that every minor-closed property of graphs can be characterized by finitely many
forbidden minors. But for antimatroids, Theorem 3 implies that there exists an infinite set
of antimatroids such that any of them is not a proper minor of the other one.
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