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() Convex geometries (Edelman & Jamison ’85)

. SetupSetup E a nonempty finite set,

. SetupSetup L ⊆ 2E a family of subsets of E.
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() Convex geometries (Edelman & Jamison ’85)

. SetupSetup E a nonempty finite set,

. SetupSetup L ⊆ 2E a family of subsets of E.

. Def.Def. L is called a convex geometry on E

. Def.Def. if L satisfies the following conditions.

(1) ∅ ∈ L, E ∈ L.

(2) X, Y ∈ L ⇒ X ∩ Y ∈ L.

(3) X ∈ L \ {E} ⇒ ∃ e ∈ E \X: X∪ {e} ∈ L.

X ⊆ E is called convex if X ∈ L.
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() Example 1: convex shelling

. GivenGiven P a finite point set in IRd

. Def.Def. L the convex shelling on P:

. Def.Def. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312
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123 134

234

3

14 34

421

∅
blahblah
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() Example 1: convex shelling

. GivenGiven P a finite point set in IRd

. Def.Def. L the convex shelling on P:

. Def.Def. L = {X ⊆ P : conv(X) ∩ P = X}
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∅
(3) X ∈ L \ {E} ⇒ ∃ e ∈ E \ X: X ∪ {e} ∈ L.
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() Example 1: convex shelling

. GivenGiven P a finite point set in IRd

. Def.Def. L the convex shelling on P:

. Def.Def. L = {X ⊆ P : conv(X) ∩ P = X}

432

1

∅
4321

12 13 3423 14

134

234

1234

123

The extreme points of conv({1, 2, 3, 4}) = {1, 2, 4}
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. GivenGiven P a finite point set in IRd
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432

1

1234

234

134123

12 13 23

4

14 34

321

∅
The extreme points of conv({2}) = {2}

3



3
p

() Example 1: convex shelling

. GivenGiven P a finite point set in IRd

. Def.Def. L the convex shelling on P:

. Def.Def. L = {X ⊆ P : conv(X) ∩ P = X}

432

1

∅
1 2 3 4

341412 2313

123 134

234

1234

The extreme points of conv(∅) = ∅
3



3
p

() Example 1: convex shelling

. GivenGiven P a finite point set in IRd

. Def.Def. L the convex shelling on P:

. Def.Def. L = {X ⊆ P : conv(X) ∩ P = X}
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() Example 2: poset shelling

. GivenGiven P = (E,≤) a partially ordered set

. Def.Def. L the poset shelling of P:

. Def.Def. L = {X ⊆ E : e ∈ X, f ≤ e ⇒ f ∈ X}

3 4

21

124

24

2

∅

123

12

1

1234
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() Example 2: poset shelling

. GivenGiven P = (E,≤) a partially ordered set

. Def.Def. L the poset shelling of P:

. Def.Def. L = {X ⊆ E : e ∈ X, f ≤ e ⇒ f ∈ X}

3 4

21

1234

123

12

1

∅

2

24

124

The maximal elements of {1, 2, 3, 4} = {3, 4}
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. GivenGiven P = (E,≤) a partially ordered set

. Def.Def. L the poset shelling of P:

. Def.Def. L = {X ⊆ E : e ∈ X, f ≤ e ⇒ f ∈ X}
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() Example 2: poset shelling

. GivenGiven P = (E,≤) a partially ordered set

. Def.Def. L the poset shelling of P:

. Def.Def. L = {X ⊆ E : e ∈ X, f ≤ e ⇒ f ∈ X}

1 2
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. GivenGiven P = (E,≤) a partially ordered set
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() Example 2: poset shelling

. GivenGiven P = (E,≤) a partially ordered set

. Def.Def. L the poset shelling of P:

. Def.Def. L = {X ⊆ E : e ∈ X, f ≤ e ⇒ f ∈ X}
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() Example 3: tree shelling

. GivenGiven T = (V, E) a tree

. Def.Def. L the tree shelling on T :

. Def.Def. L = {X ⊆ E : X forms a subtree of T }

2
4

1 3

∅
4321

12

123

13 23 34

134

234

1234

(Remove an edge incident to a leaf one by one)
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() Example 4: graph search

. GivenGiven G = (V ∪ {r}, E) a graph, r a root

. Def.Def. L the graph search on G:

. Def.Def.L = {V \ X : ∀ v ∈ X ∃ an (r, v)-path in G[X ∪ {r}]}

2

1

4

3

r

∅
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1

14

3
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2434
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(Consider the search on a graph)
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() Example 4: graph search

. GivenGiven G = (V ∪ {r}, E) a graph, r a root

. Def.Def. L the graph search on G:

. Def.Def.L = {V \ X : ∀ v ∈ X ∃ an (r, v)-path in G[X ∪ {r}]}
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∅
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2434
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Rem. undirected/directed graph, point/line-search
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() Other examples

There are many other examples...
�� From graphs

•• The family of connected subgraphs in a block graph (Jamison-Waldner ’81)

•• The family of monophonically convex sets in a chordal graph
(Farber & Jamison ’86)

•• The family of geodecically convex sets in a Ptolemaic graph
(Farber & Jamison ’86)

•• The family of m3-convex sets in an HDDA-free graph
(Dragan, Nicolai & Branstädt ’99)

�� From partially ordered sets

•• The family of order convex sets in a poset
•• The family of k-antichains in a poset (Greene & Kleitman ’76)

•• The family of subsemilattices in a semilattice (Jamison-Waldner ’78)

�� From geometry

•• Lower convex shelling on a finite point set
•• Convex shelling on an acyclic oriented matroid (Edelman ’82)

�� From matroids

•• Line-search in a matroid (Goecke, Korte & Lovász ’89)

and more!
7
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() Motivation and appearance

�� Understanding “Convexity”
in an axiomatized combinatorial setting

�� Counterpart of matroids

�� Equivalent to antimatroids (and others)

�� Mathematical social science, mathematical psychology

�� AND/OR networks, scheduling, project planning

�� Directed hypergraphs

�� Horn CNF formulas

�� Lattice theory...
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() Lattice structure

. SetupSetup L a convex geometry on E

. Obs.Obs. L forms a lattice with ⊆.

The maximum element = E.
The minimum element = ∅.
The meet of X, Y ∈ L = X ∩ Y ∈ L (by (2)).

10
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() Lattice structure

. SetupSetup L a convex geometry on E

. Obs.Obs. L forms a lattice with ⊆.

. Def.Def. A lattice L is meet-distributive ⇔
for every x, y ∈ L such that x is the meet of
elements y covers, [x, y] is Boolean

x

y

1̂

0̂ ∅

431

13

1234

14 34 24

234134

10



10
p

() Lattice structure

. SetupSetup L a convex geometry on E

. Obs.Obs. L forms a lattice with ⊆.

. Def.Def. A lattice L is meet-distributive ⇔
for every x, y ∈ L such that x is the meet of
elements y covers, [x, y] is Boolean

x

y

1̂

0̂ ∅

431

13

1234

14 34 24

234134

10



10
p

() Lattice structure

. SetupSetup L a convex geometry on E

. Obs.Obs. L forms a lattice with ⊆.

. Def.Def. A lattice L is meet-distributive ⇔
for every x, y ∈ L such that x is the meet of
elements y covers, [x, y] is Boolean

. Obs.Obs. L is meet-distributive.

10



10
p

() Lattice structure

. SetupSetup L a convex geometry on E

. Obs.Obs. L forms a lattice with ⊆.

. Def.Def. A lattice L is meet-distributive ⇔
for every x, y ∈ L such that x is the meet of
elements y covers, [x, y] is Boolean

. Obs.Obs. L is meet-distributive.

. Thm.Thm. (Edelman ’80)

∀ finite meet-distributive lattice L
∃ a convex geometry L on E s.t. L ∼=L.

Convex geometries ≡ Meet-distributive lattices
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() Digression: similar relations in combinatorics

. Corresp.Corresp. Set systems ≡ Lattices

. Thm.Thm. (Edelman ’80)

Convex geometries ≡ Meet-distributive

. Thm.Thm. (Birkhoff ’33)

Poset shellings Distributive

. Thm.Thm. (Birkhoff ’35; Whitney ’35)

Matroids Geometric

. Thm.Thm. (Campbell ’43; Birkhoff & Frink ’48)

Closure spaces General
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() Classification Problem

. AimAim L a convex geometry

To find: L belongs to a certain class
m

L satisfies a certain property

Certain classes??

Certain properties??
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() Classification Problem

. AimAim L a convex geometry

To find: L belongs to a certain class
m

L satisfies a certain property

Certain classes??: in this talk

�� convex shellings of finite point sets

�� poset shellings

�� tree shellings

�� graph searches

Certain properties??: in this talk

�� forbidden minors
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() Minors of convex geometries

. SetupSetup L a convex geometry on E, A,B ∈ L, A ⊆ B

. Def.Def. The minor of L w.r.t. (A,B) is defined by

L[A,B] = {X \ A : X ∈ L, A ⊆ X ⊆ B}.

L[3, 134]L

4

∅
1

14

1234

234

134123

12 2313

1 2

14 34

43

∅

14
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() Minors of convex geometries

. SetupSetup L a convex geometry on E, A,B ∈ L, A ⊆ B

. Def.Def. The minor of L w.r.t. (A,B) is defined by

L[A,B] = {X \ A : X ∈ L, A ⊆ X ⊆ B}.

L[1, 1234]L
∅

2 3 4

3423

2341234

234

134123

12 13 23 14 34

4321

∅
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() Minors of convex geometries

. SetupSetup L a convex geometry on E, A,B ∈ L, A ⊆ B

. Def.Def. The minor of L w.r.t. (A,B) is defined by

L[A,B] = {X \ A : X ∈ L, A ⊆ X ⊆ B}.

L[A,B]L

E

B

A

∅

B \A

∅

. Rem.Rem. A minor is also a convex geometry.
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() Classification according to minors

Classes closed under taking minors

�� Poset shellings
�� Graph searches

•• directed/point
•• undirected/point
•• directed/line
•• undirected/line

Classes not closed under taking minors

�� Convex shellings of finite point sets
�� Tree shellings
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() Forbidden-minor char’n for poset shellings

. Obs.Obs. This is not a poset shelling.

?? ??

1 3

2
∅

1 2 3

23

123

12

.

L is a poset shelling
m

L contains no minor isomorphic to the one above.
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. Thm.Thm. (Nakamura ’03)
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() Forbidden-minor char’n for digraph point-searches

. Obs.Obs. This is not a digraph point-search.

r

??

2

31

??

∅

2

23

123

12

. Thm.Thm.

L is a digraph point-search
m

L contains no minor isomorphic to the one above.
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. Obs.Obs. This is not a digraph point-search.

r

??

2

31
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∅
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23

123
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. Thm.Thm. (Nakamura ’03)

L is a digraph point-search
m

L contains no minor isomorphic to the one above.
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() Forbidden-minor characterizations: List

�� Poset shellings (Nakamura ’03)

�� Graph searches

•• directed/point (Nakamura ’03)
•• undirected/point (Nakamura ’03)
•• directed/line (Okamoto & Nakamura ’03)
•• undirected/line (OPEN)

. Open problemOpen problem Forbidden-minor characterization of

undirected graph line-searches
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() Classification according to minors

Classes closed under taking minors

�� Poset shellings
�� Graph searches

•• directed/point
•• undirected/point
•• directed/line
•• undirected/line

Classes not closed under taking minors

�� Convex shellings of finite point sets
�� Tree shellings
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() Classification according to minors

Classes closed under taking minors

�� Poset shellings
�� Graph searches

•• directed/point
•• undirected/point
•• directed/line
•• undirected/line

�� Minors of convex shellings of finite point sets
�� Minors of tree shellings

Classes not closed under taking minors

�� Convex shellings of finite point sets
�� Tree shellings
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() Minors of convex shellings

. ThmThm (Kashiwabara, Nakamura & Okamoto ’03)

L is a minor of a convex shelling
m

L is a convex geometry.

In other words,

More precisely speaking,
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() Minors of convex shellings

. ThmThm (Kashiwabara, Nakamura & Okamoto ’03)

L is a minor of a convex shelling
m

L is a convex geometry.

In other words,
Every convex geometry is
a minor of a convex shelling.

More precisely speaking,
For any convex geometry L,
there exists a finite point set P = P(L) ⊆ IRd

for some d = d(L)
such that L ∼= L ′[A,B],
where L ′ is the convex shelling on P and
A,B ∈ L ′, A ⊆ B.

20
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() What is d(L)?

. ThmThm (Kashiwabara, Nakamura & Okamoto ’03)

∀L ∃P = P(L) ⊆ IRd, for some d = d(L),
such that L ∼= L ′[A,B],
where L ′ is the conv shelling on P
A,B ∈ L ′, A ⊆ B.

. Open problemOpen problem What is mind(L)?

What’s known: let L be on an n-element set

�� ∀L: mind(L) ≤ n− 1

�� ∃L: mind(L) ≥ n− 2

21
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() What is |P(L)|?

. ThmThm (Kashiwabara, Nakamura & Okamoto ’03)

∀L ∃P = P(L) ⊆ IRd, for some d = d(L),
such that L ∼= L ′[A,B],
where L ′ is the conv shelling on P
A,B ∈ L ′, A ⊆ B.

. Open problemOpen problem What is min |P(L)|?

What’s known: let L be on an n-element set

�� ∀L: n ≤ min |P(L)| ≤ n+ |C(L)|

(C(L) the circuits of L, ... defined later)
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() Forbidden-minor characterizations: List

�� Poset shellings (Nakamura ’03)

�� Graph searches

•• directed/point (Nakamura ’03)
•• undirected/point (Nakamura ’03)
•• directed/line (Okamoto & Nakamura ’03)
•• undirected/line (OPEN)

�� Minors of convex shellings
(Kashiwabara, Nakamura & Okamoto ’03)

�� Minors of tree shellings (OPEN)

. Open problemOpen problem Forbidden-minor characterization of

minors of tree shellings
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() Algorithmic aspect

. SetupSetup Given a convex geometry L as the oracle

X −→ Oracle −→
{

“Yes” if X ∈ L

“No” if X 6∈ L
Measure: # of oracle calls

. Thm.Thm. (Enright ’01)

(1) There is a poly-time algorithm to recognize
a poset shelling.

(2) There is no poly-time algorithm to recognize
a graph search (directed/point).

(3) There is no poly-time algorithm to recognize
a graph search (undirected/point).
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() Contents

Biased introduction to (abstract) convex geometries

�� Definition and Examples (15 min.)

�� Basic Concepts I (5 min.)

�� Classification (15 min.)

�� Basic Concepts II (15 min.)

�� Others (5 min.)

�� Summary (1 min.)
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() In analogy with matroids

. FrameworkFramework

Convex geometries Matroids

Convex sets Flats

Closure Closure

Extreme points isthmus

Independent sets Independent sets

Circuits Circuits

...
...
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() Closure operators

. SetupSetup L ⊆ 2E a convex geometry on E

. Def.Def. The closure operator of L is

. Def.Def. a mapping τL : 2E → 2E defined as

τL(A) =
⋂

{X ∈ L : A ⊆ X}

= smallest convex set containing A.

. AnalogyAnalogy X ⊆ IRd

conv(X) = smallest convex set containing X.

. Obs.Obs. A ⊆ τL(A) for all A ⊆ E
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() Closure operators

. Def.Def. τL(A) = smallest convex set containing A.

.
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() Closure operators

. Def.Def. τL(A) = smallest convex set containing A.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312

1234

123 134

234

3

14 34

421

∅
. τL({2, 4}) = ??
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() Closure operators

. Def.Def. τL(A) = smallest convex set containing A.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312

1234

123 134

234

3

14 34

421

∅
. τL({2, 4}) = {2, 3, 4}.
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() Closure operators

. Def.Def. τL(A) = smallest convex set containing A.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312

1234

123 134

234

3

14 34

421

∅
. τL({1, 3}) = {1, 3}.
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() Closure operators

. Def.Def. τL(A) = smallest convex set containing A.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}
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3

14 34

421

∅
. τL({1, 2, 4}) = {1, 2, 3, 4}.
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() Closure operators

. Def.Def. τL(A) = smallest convex set containing A.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312

1234

123 134

234

3

14 34

421

∅
. RemRem L = {X ⊆ E : X = τL(X)} (in general).
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() Closure operators

. Def.Def. τL(A) = smallest convex set containing A.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312

1234

123 134

234

3

14 34

421

∅
. RemRem Characterizations of convex geometries

by closure operators (Edelman & Jamison ’85)
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() Characterization of closure operators

. SetupSetup τ : 2E → 2E a map

. ThmThm (Edelman & Jamison ’85)

τ is the closure operator of some convex geometry
m

(1) τ(∅) = ∅.
(2) A ⊆ τ(A) for all A ⊆ E
(3) A ⊆ B ⊆ E ⇒ τ(A) ⊆ τ(B).

(4) τ(τ(A)) = τ(A) for all A ⊆ E.

(5) A ⊆ E, e, f 6∈ τ(A), e 6= f,
e ∈ τ(A ∪ {f}) ⇒ f 6∈ τ(A ∪ {e}).
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() Characterization of closure operators

. SetupSetup τ : 2E → 2E a map

. Cf.Cf.

τ is the closure operator of some matroid
m

(1) τ(∅) = ∅.
(2) A ⊆ τ(A) for all A ⊆ E
(3) A ⊆ B ⊆ E ⇒ τ(A) ⊆ τ(B).

(4) τ(τ(A)) = τ(A) for all A ⊆ E.

(5) A ⊆ E, e, f 6∈ τ(A), e 6= f,
e ∈ τ(A ∪ {f}) ⇒ f ∈ τ(A ∪ {e}).
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() Extreme point operators

. SetupSetup L ⊆ 2E a convex geometry on E

. Def.Def. The extreme point operator of L is

. Def.Def. a mapping exL : 2E → 2E defined as

exL(A) = {e ∈ A : e 6∈ τL(A \ {e})}.

. AnalogyAnalogy X ⊆ IRd a convex polyhedron (pointed)

vert(X) = the set of vertices of X.

. Obs.Obs. exL(A) ⊆ A for all A ⊆ E
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() Extreme point operators

. Def.Def. exL(A) = {e ∈ A : e 6∈ τL(A \ {e})}.

.
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() Extreme point operators

. Def.Def. exL(A) = {e ∈ A : e 6∈ τL(A \ {e})}.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}
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∅
. exL({1, 2, 3, 4}) = ??
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() Extreme point operators

. Def.Def. exL(A) = {e ∈ A : e 6∈ τL(A \ {e})}.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312
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123 134

234

3

14 34

421

∅
. exL({1, 2, 3, 4}) = {1, 2, 4}
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() Extreme point operators

. Def.Def. exL(A) = {e ∈ A : e 6∈ τL(A \ {e})}.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}
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2 3 4

231312
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14 34

421

∅
. exL({2, 4}) = {2, 4}.
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() Extreme point operators

. Def.Def. exL(A) = {e ∈ A : e 6∈ τL(A \ {e})}.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312

1234

123 134

234

3

14 34

421

∅
. exL({1}) = {1}
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() Extreme point operators

. Def.Def. exL(A) = {e ∈ A : e 6∈ τL(A \ {e})}.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312

1234

123 134

234

3

14 34

421

∅
. RemRem L = {X ⊆ E : e ∈ exL(X \ {e}) ∀e ∈ E \ X}.
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() Extreme point operators

. Def.Def. exL(A) = {e ∈ A : e 6∈ τL(A \ {e})}.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312

1234

123 134

234

3

14 34

421

∅
. RemRem Characterizations of convex geometries by

extreme point operators (Koshevoy ’99, Ando ’02)
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() Extreme point operators

. Def.Def. exL(A) = {e ∈ A : e 6∈ τL(A \ {e})}.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

1

2 3 4

231312

1234

123 134

234

3

14 34

421

∅
. RemRem Characterizations of matroids by

extreme point operators (Ando ’02)
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() Independent sets

. SetupSetup L ⊆ 2E a convex geometry on E

. Def.Def. A set I ⊆ E is independent in L if exL(I) = I.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

exL(A) = the set of extreme points of conv(A)

2 3 4

1

2

134123 124

342423141312

∅

431

32



33
p

() Independent sets

. Def.Def. Ind(L) = the family of independent sets in L

. Lem.Lem. I ⊆ J, J ∈ Ind(L) ⇒ I ∈ Ind(L)

. Open problemOpen problem characterization of the family

of independent sets in a convex geometry

. Cf.Cf. M a matroid

Ind(M) is the family of independent sets in M
m

I ⊆ J, J ∈ Ind(M) ⇒ I ∈ Ind(M)

I1, I2 ∈ Ind(M), |I1| > |I2|
⇒ ∃ e ∈ I1 \ I2: I2 ∪ {e} ∈ Ind(M)
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() Independent sets

. Def.Def. Ind(L) = the family of independent sets in L

. Lem.Lem. I ⊆ J, J ∈ Ind(L) ⇒ I ∈ Ind(L)

. Open problemOpen problem characterization of the family

of independent sets in a convex geometry

. Cf.Cf. M a matroid

Ind(M) is the family of independent sets in M
m

(1) I ⊆ J, J ∈ Ind(M) ⇒ I ∈ Ind(M).

(2) I1, I2 ∈ Ind(M), |I1| > |I2|
⇒ ∃ e ∈ I1 \ I2: I2 ∪ {e} ∈ Ind(M).
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() Circuits

. SetupSetup L ⊆ 2E a convex geometry on E

. Def.Def. A circuit of L is a minimal dependent set.

. E.g.E.g. L = {X ⊆ P : conv(X) ∩ P = X}

2 3 4

1

2

134123 124

342423141312

∅

431

C(L) = {234}.

35



36
p

() On Circuits

. Def.Def. A circuit of L is a minimal dependent set.

C(L) = the family of circuits of L
. RemRem Characterization of convex geometries

by the family of circuits (Dietrich ’87)
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() Contents

Biased introduction to (abstract) convex geometries

�� Definition and Examples (15 min.)

�� Basic Concepts I (5 min.)

�� Classification (15 min.)

�� Basic Concepts II (15 min.)

�� Others (5 min.)

�� Summary (1 min.)
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() Optimization on convex geometries

�� Goecke ’86
•• Linear optimization on convex geometries is NP-hard.

�� Boyd & Faigle ’90
•• Greedy algorithm for bottleneck optimization

(Generalization of Lawler ’73)
•• Algorithmic characterization of convex geometries

�� Nakamura ’00, Kempner & Levit ’03
•• Further study on algor char of convex geometries

�� Kashiwabara & Okamoto ’03
•• Submodular-type optimization for convex geometries
•• Introduction of “c-submodular functions”

(Based on Krüger ’00, Ando ’02)

�� Hachimori & Nakamura ’03
•• Study on MFMC property for convex geometries
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(Based on Krüger ’00, Ando ’02)

�� Hachimori & Nakamura ’03
•• Study on MFMC property for convex geometries

38



38
p

() Optimization on convex geometries

�� Goecke ’86
•• Linear optimization on convex geometries is NP-hard.

�� Boyd & Faigle ’90
•• Greedy algorithm for bottleneck optimization

(Generalization of Lawler ’73)
•• Algorithmic characterization of convex geometries

�� Nakamura ’00, Kempner & Levit ’03
•• Further study on algor char of convex geometries

�� Kashiwabara & Okamoto ’03
•• Submodular-type optimization for convex geometries
•• Introduction of “c-submodular functions”
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(Based on Krüger ’00, Ando ’02)

�� Hachimori & Nakamura ’03
•• Study on MFMC property for convex geometries

38



38
p

() Optimization on convex geometries

�� Goecke ’86
•• Linear optimization on convex geometries is NP-hard.

�� Boyd & Faigle ’90
•• Greedy algorithm for bottleneck optimization

(Generalization of Lawler ’73)
•• Algorithmic characterization of convex geometries

�� Nakamura ’00, Kempner & Levit ’03
•• Further study on algor char of convex geometries

�� Kashiwabara & Okamoto ’03
•• Submodular-type optimization for convex geometries
•• Introduction of “c-submodular functions”
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() Cooperative games on convex geometries

. Cooperative gamesCooperative games

Every set of players can form a coalition

. Cooperative games on convex geometriesCooperative games on convex geometries (Bilbao)

A member in a convex geometry can only be a coalition
(based on Faigle & Kern ’92)

�� Power indices (Edelman ’97, Bilbao, Jiménez & Lopéz ’98)

�� Shapley values (Bilbao ’98, Bilbao & Edelman ’00)

�� Probabilistic values (Bilbao, Lebrón & Jiménez ’98)

�� Cores (Bilbao, Lebrón & Jiménez ’99, Okamoto ’02)

�� Selectopes (Bilbao, Jiménez, Lebrón & Peters ’00)
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�� Cores (Bilbao, Lebrón & Jiménez ’99, Okamoto ’02)
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() Enumeration from the viewpoint of convex geometries

�� Background
•• Gray code for the linear extensions of a poset
⇒ an efficient enumeration!!
•• Linear extensions of a poset

= Removing sequences in a poset shelling
�� Pruesse & Ruskey ’93
•• Considered Gray code for convex geometries for

enumeration of removing sequences in a convex
geometry

�� Chandran, Ibarra, Ruskey & Sawada ’03
•• Application for the enumeration of simplicial

elimination orderings in a chordal graph
•• Enables the constant amortized time enumeration
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() Summary

Biased introduction to abstract convex geometries

. SummarySummary

Theory of convex geometries

appears in many guises (by different names).

is activated by some recent results.

leaves many open questions.

sheds light to matroid theory as well.

does not have enough people working on.

is looking forward to your contributions.
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() End of the talk

Thank you very much.

Slides will be obtained from

http://www.inf.ethz.ch/personal/okamotoy/

or by email to

okamotoy@inf.ethz.ch
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