Recent Development of Abstract Convex Geometries

Yoshio Okamoto (ETH Zurich)

December 18–19, 2003 Workshop: Submodular Functions and Combinatorial Optimization @ Research Institute for Mathematical Sciences, Kyoto University, Japan

Supported by the Berlin-Zürich Joint Graduate Program

Geometry Computation

Biased introduction to (abstract) convex geometries

Definition and Examples	(15 min.)
Basic Concepts I	(5 min.)
Classification	(15 min.)
Basic Concepts II	(15 min.)
Others	(5 min.)
Summary	(1 min.)

Biased introduction to (abstract) convex geometries

Definition and Examples	(15 min.)
Basic Concepts I	(5 min.)
Classification	(15 min.)
Basic Concepts II	(15 min.)
Others	(5 min.)
Summary	(1 min.)

Setup

E a nonempty finite set,

 $\mathcal{L} \subseteq 2^E$ a family of subsets of E.

Setup E a nonempty finite set,

 $\mathcal{L} \subseteq 2^E$ a family of subsets of E.

 ${\cal L}$ is called a convex geometry on E

if ${\mathcal L}$ satisfies the following conditions.

(1) $\emptyset \in \mathcal{L}, E \in \mathcal{L}$. (2) $X, Y \in \mathcal{L} \Rightarrow X \cap Y \in \mathcal{L}$. (3) $X \in \mathcal{L} \setminus \{E\} \Rightarrow \exists e \in E \setminus X: X \cup \{e\} \in \mathcal{L}$.

 $X \subseteq E$ is called **convex** if $X \in \mathcal{L}$.

Example 2: poset shelling Given $P = (E, \leq)$ a partially ordered set Def. \mathcal{L} the **poset shelling** of P: $\mathcal{L} = \{ X \subset E : e \in X, f \leq e \Rightarrow f \in X \}$ 1234 3 123 124 12 24 2

Example 2: poset shelling Given $P = (E, \leq)$ a partially ordered set Def. \mathcal{L} the **poset shelling** of P: $\mathcal{L} = \{ X \subset E : e \in X, f \le e \Rightarrow f \in X \}$ 1234 3 123 124 12 24 2 The maximal elements of $\{1, 2, 3, 4\} = \{3, 4\}$

Example 2: poset shelling Given $P = (E, \leq)$ a partially ordered set Def. \mathcal{L} the **poset shelling** of P: $\mathcal{L} = \{ X \subset E : e \in X, f \leq e \Rightarrow f \in X \}$ 1234 3 123 124 12 24 2

Example 3: tree shelling 5 Given T = (V, E) a tree Def. \mathcal{L} the **tree shelling** on T: $\mathcal{L} = \{ X \subset E : X \text{ forms a subtree of } T \}$ 1234 (Remove an edge incident to a leaf one by one)

Other examples

There are many other examples...

- From graphs
 - The family of connected subgraphs in a block graph (Jamison-Waldner '81)
 - The family of monophonically convex sets in a chordal graph
 - (Farber & Jamison '86) • The family of geodecically convex sets in a Ptolemaic graph

(Farber & Jamison '86)

The family of m³-convex sets in an HDDA-free graph

(Dragan, Nicolai & Branstädt '99)

From partially ordered sets

- The family of order convex sets in a poset
- The family of k-antichains in a poset
- The family of subsemilattices in a semilattice

From geometry

- Lower convex shelling on a finite point set
- Convex shelling on an acyclic oriented matroid

From matroids

Line-search in a matroid

and more!

(Greene & Kleitman '76) (Jamison-Waldner '78)

(Edelman '82)

(Goecke, Korte & Lovász '89)

- Understanding "Convexity" in an axiomatized combinatorial setting
- Counterpart of matroids
- Equivalent to antimatroids (and others)
- Mathematical social science, mathematical psychology
- AND/OR networks, scheduling, project planning
- Directed hypergraphs
- Horn CNF formulas
- Lattice theory...

- Understanding "Convexity" in an axiomatized combinatorial setting
- Counterpart of matroids
- Equivalent to antimatroids (and others)
- Mathematical social science, mathematical psychology
- AND/OR networks, scheduling, project planning
- Directed hypergraphs
- Horn CNF formulas
- Lattice theory...

- Understanding "Convexity" in an axiomatized combinatorial setting
- Counterpart of matroids
- Equivalent to antimatroids (and others)
- Mathematical social science, mathematical psychology
- AND/OR networks, scheduling, project planning
- Directed hypergraphs
- Horn CNF formulas
- Lattice theory...

- Understanding "Convexity" in an axiomatized combinatorial setting
- Counterpart of matroids
- Equivalent to antimatroids (and others)
- Mathematical social science, mathematical psychology
- AND/OR networks, scheduling, project planning
- Directed hypergraphs
- Horn CNF formulas
- Lattice theory...

- Understanding "Convexity" in an axiomatized combinatorial setting
- Counterpart of matroids
- Equivalent to antimatroids (and others)
- Mathematical social science, mathematical psychology
- AND/OR networks, scheduling, project planning
- Directed hypergraphs
- Horn CNF formulas
- Lattice theory...

- Understanding "Convexity" in an axiomatized combinatorial setting
- Counterpart of matroids
- Equivalent to antimatroids (and others)
- Mathematical social science, mathematical psychology
- AND/OR networks, scheduling, project planning
- Directed hypergraphs
- Horn CNF formulas
- Lattice theory...

- Understanding "Convexity" in an axiomatized combinatorial setting
- Counterpart of matroids
- Equivalent to antimatroids (and others)
- Mathematical social science, mathematical psychology
- AND/OR networks, scheduling, project planning
- Directed hypergraphs
- Horn CNF formulas
- Lattice theory...

- Understanding "Convexity" in an axiomatized combinatorial setting
- Counterpart of matroids
- Equivalent to antimatroids (and others)
- Mathematical social science, mathematical psychology
- AND/OR networks, scheduling, project planning
- Directed hypergraphs
- Horn CNF formulas
- Lattice theory...

Biased introduction to (abstract) convex geometries

Definition and Examples	(15 min.)
Basic Concepts I	(5 min.)
Classification	(15 min.)
Basic Concepts II	(15 min.)
Others	(5 min.)
Summary	(1 min.)

10	Lattice structu	ire
Setup	${\cal L}$ a convex geometry on E	
Obs.	\mathcal{L} forms a lattice with \subseteq .	
Def.	A lattice L is meet-distributive \Leftrightarrow for every $x, y \in L$ such that x is the meet of elements y covers, $[x, y]$ is Boolean	
Obs.	${\cal L}$ is meet-distributive.	
Thm.	(Edelman '80) \forall finite meet-distributive lattice L \exists a convex geometry \mathcal{L} on E s.t. L \cong \mathcal{L} .	
Con	vex geometries \equiv Meet-distributive lattices	
		10

	Digression: similar	relations in combinatorics
Corresp.	Set systems \equiv	Lattices
Thm.	(Edelman '80) Convex geometries \equiv	Meet-distributive

	Digression:	similar	relations in combinatorics
Corresp.	Set systems		Lattices
Thm.	(Edelman '80) Convex geometrie	es ≡	Meet-distributive
Thm.	(Birkhoff 33) Poset shellings	\equiv	Distributive

	Digression:	similar	relations in combinatorics
Corresp.	Set systems	=	Lattices
Thm.	(Edelman '80)		
	Convex geometrie	$es \equiv$	Meet-distributive
Thm.	(Birkhoff '33)		
	Poset shellings	\equiv	Distributive
Thm.	(Birkhoff '35; Whit	ney '35	5)
	Matroids	\equiv	Geometric

	Digression: s	imilar	relations in combinatorics
Corresp.	Set systems	=	Lattices
Thm.	(Edelman '80)		Moot dictributive
Thm.	(Birkhoff '33)		Meet-distributive
	Poset shellings	\equiv	Distributive
Thm.	(Birkhoff '35; Whitr	1ey '35	5)
	Matroids	\equiv	Geometric
Thm.	(Campbell '43; Birk	hoff &	Frink '48)
	Closure spaces	\equiv	General

11	Digression:	similar r	elations in combinatorics
Corresp.	Set systems	=	Lattices
Thm.	(Edelman '80) Convex geometrie	s ≡	Meet-distributive
Thm.	(Birkhoff '33) [cha Poset shellings	aracteriz ≡	ation of poset shellings] Distributive
Thm.	(Birkhoff '35; Whit Matroids	ney '35) ≡	Geometric
Thm.	(Campbell '43; Birk Closure spaces	khoff & ∣ ≡	Frink '48) General

Biased introduction to (abstract) convex geometries

Definition and Examples	(15 min.)
Basic Concepts I	(5 min.)
Classification	(15 min.)
Basic Concepts II	(15 min.)
Others	(5 min.)
Summary	(1 min.)

 \mathcal{L} satisfies a certain property

13/

Classification Problem

Aim \mathcal{L} a convex geometry

Certain classes??: in this talk

- convex shellings of finite point sets
- poset shellings
- tree shellings
- graph searches

Certain properties??: in this talk

 \mathcal{L}

 $\mathcal{L}[3, 134]$

Classification according to minors

Classes closed under taking minors

- Poset shellings
 - Graph searches
 - directed/point
 - undirected/point
 - directed/line
 - undirected/line

Classes not closed under taking minors

15

Convex shellings of finite point sets Tree shellings

Forbidden-minor characterizations: List

Poset shellings

18

- Graph searches
 - directed/point
 - undirected/point
 - directed/line
 - undirected/line

(Nakamura '03)

(Nakamura '03) (Nakamura '03) (Okamoto & Nakamura '03) (OPEN)

Open problem

Forbidden-minor characterization of undirected graph line-searches

Classification according to minors

Classes closed under taking minors

♦

19

- Poset shellings
- Graph searches
 - directed/point
 - undirected/point
 - directed/line
 - undirected/line

Classes not closed under taking minors

Convex shellings of finite point sets Tree shellings

Classification according to minors

Classes closed under taking minors

- Poset shellings
 - Graph searches
 - directed/point
 - undirected/point
 - directed/line
 - undirected/line

19

Minors of convex shellings of finite point sets Minors of tree shellings

Classes not closed under taking minors

- Convex shellings of finite point sets
- Tree shellings

(Kashiwabara, Nakamura & Okamoto '03) \mathcal{L} is a minor of a convex shelling $\widehat{\mathcal{L}}$ is a convex geometry.

(Kashiwabara, Nakamura & Okamoto '03) \mathcal{L} is a minor of a convex shelling $\widehat{\mathcal{L}}$ is a convex geometry.

In other words,

Every convex geometry is a minor of a convex shelling.

More precisely speaking, For any convex geometry \mathcal{L} , ...

Minors of convex shellings

20

(Kashiwabara, Nakamura & Okamoto '03) \mathcal{L} is a minor of a convex shelling $\widehat{\mathcal{L}}$ is a convex geometry.

In other words,

Every convex geometry is a minor of a convex shelling.

More precisely speaking,

For any convex geometry \mathcal{L} , there exists a finite point set $\mathcal{P} = \mathcal{P}(\mathcal{L}) \subseteq \mathrm{I\!R}^d$ for some $d = d(\mathcal{L})$

Minors of convex shellings

20

(Kashiwabara, Nakamura & Okamoto '03) \mathcal{L} is a minor of a convex shelling $\widehat{\mathcal{L}}$ is a convex geometry.

In other words,

Every convex geometry is a minor of a convex shelling.

More precisely speaking,

For any convex geometry \mathcal{L} , there exists a finite point set $\mathcal{P} = \mathcal{P}(\mathcal{L}) \subseteq \mathbb{R}^d$ for some $d = d(\mathcal{L})$ such that $\mathcal{L} \cong \mathcal{L}'[A, B]$, where \mathcal{L}' is the convex shelling on \mathcal{P} and $A, B \in \mathcal{L}', A \subseteq B$.

(Okamoto & Nakamura '03)

(Nakamura '03)

(Nakamura '03)

(Nakamura '03)

(OPEN)

(OPEN)

Poset shellings

23

- Graph searches
 - directed/point
 - undirected/point
 - directed/line
 - undirected/line
- Minors of convex shellings (Kashiwabara, Nakamura & Okamoto '03)
- Minors of tree shellings

Open problem

Forbidden-minor characterization of

minors of tree shellings

<u>Measure</u>: # of oracle calls

Thm.

- (Enright '01)
- (1) There is a poly-time algorithm to recognize a poset shelling.
- (2) There is no poly-time algorithm to recognize a graph search (directed/point).
- (3) There is no poly-time algorithm to recognize a graph search (undirected/point).

Biased introduction to (abstract) convex geometries

Definition and Examples	(15 min.)
Basic Concepts I	(5 min.)
Classification	(15 min.)
Basic Concepts II	(15 min.)
Others	(5 min.)
Summary	(1 min.)

Framework

 $\frac{26}{1}$

Convex geometries	Matroids
Convex sets	Flats
Closure	Closure
Extreme points	isthmus
Independent sets	Independent sets
Circuits	Circuits

•

$$\mathcal{L} \subseteq 2^{\mathsf{E}}$$
 a convex geometry on E

The closure operator of \mathcal{L} is a mapping $\tau_{\mathcal{L}}: 2^{E} \rightarrow 2^{E}$ defined as

$\begin{aligned} \tau_{\mathcal{L}}(A) &= \bigcap \{ X \in \mathcal{L} : A \subseteq X \} \\ &= \text{smallest convex set containing } A. \end{aligned}$

$$X \subseteq \mathrm{I\!R}^d$$

conv(X) = smallest convex set containing X.

 $A\subseteq \tau_{\mathcal{L}}(A)$ for all $A\subseteq E$

$$\frac{28}{V} \qquad \qquad \text{Closure operators} \\ \hline \text{Def.} \quad \tau_{\mathcal{L}}(A) = \text{smallest convex set containing } A. \\ \hline \end{array}$$

Rem

Characterizations of convex geometries by closure operators (Edelman & Jamison '85) $\frac{29}{1}$

Characterization of closure operators

Setup

$$\tau: 2^E \to 2^E$$
 a map

Thm

(Edelman & Jamison '85) τ is the closure operator of some convex geometry (1) $\tau(\emptyset) = \emptyset$. (2) $A \subset \tau(A)$ for all $A \subset E$ (3) $A \subset B \subset E \Rightarrow \tau(A) \subset \tau(B)$. (4) $\tau(\tau(A)) = \tau(A)$ for all $A \subset E$. (5) $A \subseteq E, e, f \not\in \tau(A), e \neq f$, $e \in \tau(A \cup \{f\}) \Rightarrow f \notin \tau(A \cup \{e\}).$

 $\frac{29}{1}$

Characterization of closure operators

Setup

$$\tau: 2^E \rightarrow 2^E$$
 a map

Cf.

 τ is the closure operator of some matroid (1) $\tau(\emptyset) = \emptyset$. (2) $A \subset \tau(A)$ for all $A \subset E$ (3) $A \subset B \subset E \Rightarrow \tau(A) \subset \tau(B)$. (4) $\tau(\tau(A)) = \tau(A)$ for all $A \subset E$. (5) $A \subseteq E, e, f \not\in \tau(A), e \neq f$, $e \in \tau(A \cup \{\mathbf{f}\}) \Rightarrow \mathbf{f} \in \tau(A \cup \{e\}).$

Extreme point operators

30

$$\mathcal{L} \subseteq 2^{\mathsf{E}}$$
 a convex geometry on E

The extreme point operator of \mathcal{L} is a mapping $ex_{\mathcal{L}} : 2^E \to 2^E$ defined as

$$\mathsf{ex}_{\mathcal{L}}(\mathbf{A}) = \{ \mathbf{e} \in \mathbf{A} : \mathbf{e} \not\in \tau_{\mathcal{L}}(\mathbf{A} \setminus \{\mathbf{e}\}) \}.$$

 $X \subseteq {\rm I\!R}^d$ a convex polyhedron (pointed) vert(X) = the set of vertices of X.

$$ex_{\mathcal{L}}(A) \subseteq A$$
 for all $A \subseteq E$

31

Extreme point operators

 $\mathbf{ex}_{\mathcal{L}}(\mathbf{A}) = \{ e \in \mathbf{A} : e \not\in \tau_{\mathcal{L}}(\mathbf{A} \setminus \{e\}) \}.$

Characterizations of convex geometries by extreme point operators (Koshevoy '99, Ando '02)

Characterizations of matroids by extreme point operators

(Ando '02)

Setup $\mathcal{L} \subseteq 2^{E}$ a convex geometry on E

A set $I \subseteq E$ is **independent** in \mathcal{L} if $ex_{\mathcal{L}}(I) = I$.

Def.

32

$$\begin{split} \mathcal{L} = \{ X \subseteq \mathcal{P} : \text{conv}(X) \cap \mathcal{P} = X \} \\ \text{ex}_{\mathcal{L}}(A) = \text{the set of extreme points of conv}(A) \end{split}$$

34 **Independent sets** Def. $Ind(\mathcal{L}) = the family of independent sets in \mathcal{L}$ $I \subseteq J, J \in \mathsf{Ind}(\mathcal{L}) \Rightarrow I \in \mathsf{Ind}(\mathcal{L})$ _em. Open problem characterization of the family of independent sets in a convex geometry Cf. \mathcal{M} a matroid $\mathsf{Ind}(\mathcal{M})$ is the family of independent sets in \mathcal{M} (1) $I \subset J, J \in Ind(\mathcal{M}) \Rightarrow I \in Ind(\mathcal{M}).$ (2) $I_1, I_2 \in Ind(\mathcal{M}), |I_1| > |I_2|$ $\Rightarrow \exists e \in I_1 \setminus I_2: I_2 \cup \{e\} \in \mathsf{Ind}(\mathcal{M}).$

Def.

A **circuit** of \mathcal{L} is a minimal dependent set.

 $\mathcal{C}(\mathcal{L}) = \mathsf{the}\ \mathsf{family}\ \mathsf{of}\ \mathsf{circuits}\ \mathsf{of}\ \mathcal{L}$

Characterization of convex geometries by the family of circuits (Dietrich '87)

Biased introduction to (abstract) convex geometries

Definition and Examples	(15 min.)
Basic Concepts I	(5 min.)
Classification	(15 min.)
Basic Concepts II	(15 min.)
Others	(5 min.)
Summary	(1 min.)

Goecke '86
 Linear optimization on convex geometries is NP-hard.
Boyd & Faigle '90
 Greedy algorithm for bottleneck optimization (Generalization of Lawler '73)
 Algorithmic characterization of convex geometries
🔶 Nakamura '00, Kempner & Levit '03
Further study on algor char of convex geometries
🔶 Kashiwabara & Okamoto '03
 Submodular-type optimization for convex geometries Introduction of "c-submodular functions" (Based on Krüger '00, Ando '02)
 Hachimori & Nakamura '03 Study on MFMC property for convex geometries

 Goecke '86 Linear optimization on convex geometries is NP-hard
Boyd & Faigle '90
 Greedy algorithm for bottleneck optimization (Generalization of Lawler '73)
 Algorithmic characterization of convex geometries
🔶 Nakamura '00, Kempner & Levit '03
Further study on algor char of convex geometries
🔶 Kashiwabara & Okamoto '03
 Submodular-type optimization for convex geometries Introduction of "c-submodular functions" (Based on Krüger '00, Ando '02)
 Hachimori & Nakamura '03 Study on MFMC property for convex geometries

♦ Goecke '86
Linear optimization on convex geometries is NP-hard.
Boyd & Faigle '90
 Greedy algorithm for bottleneck optimization
(Generalization of Lawler '73)
Algorithmic characterization of convex geometries
Nakamura '00, Kempner & Levit '03
Further study on algor char of convex geometries
🔶 Kashiwabara & Okamoto '03
Submodular-type optimization for convex geometries
Introduction of c-submodular functions (Based on Krüger '00, Ando '02)
Hachimori & Nakamura '03
Study on MFMC property for convex geometries

Goecke '86
Linear optimization on convex geometries is NP-hard.
Boyd & Faigle '90
Greedy algorithm for bottleneck optimization
(Generalization of Lawler '73)
 Algorithmic characterization of convex geometries
Nakamura '00, Kempner & Levit '03
Further study on algor char of convex geometries
🔶 Kashiwabara & Okamoto '03
Submodular-type optimization for convex geometries
Introduction of "c-submodular functions"
(Based on Kruger 700, Ando 702)
Hachimori & Nakamura '03
Study on MFMC property for convex geometries

♦ Goecke '86
Linear optimization on convex geometries is NP-hard.
♦ Boyd & Faigle '90
 Greedy algorithm for bottleneck optimization (Generalization of Lawler '73)
 Algorithmic characterization of convex geometries
🔶 Nakamura '00, Kempner & Levit '03
Further study on algor char of convex geometries
🔶 Kashiwabara & Okamoto '03
 Submodular-type optimization for convex geometries
 Introduction of "c-submodular functions" (Based on Krüger '00, Ando '02)
🔶 Hachimori & Nakamura '03
Study on MFMC property for convex geometries

Goecke '86
 Linear optimization on convex geometries is NP-hard.
Boyd & Faigle '90
 Greedy algorithm for bottleneck optimization (Generalization of Lawler '73)
 Algorithmic characterization of convex geometries
Nakamura '00, Kempner & Levit '03
Further study on algor char of convex geometries
Kashiwabara & Okamoto '03
Submodular-type optimization for convex geometries Introduction of "c-submodular functions"
(Based on Krüger '00, Ando '02)
Hachimori & Nakamura '03
Study on MFMC property for convex geometries

Cooperative games

Selectopes

Every set of players can form a coalition

Cooperative games on convex geometries (Bilbao)

A member in a convex geometry can only be a coalition (based on Faigle & Kern '92)

🔶 Power indices 🛛 (Edelman '97, Bilbao, Jiménez & Lopéz '98)

- 🔶 Shapley values 🛛 (Bilbao '98, Bilbao & Edelman '00)
- 🔶 Probabilistic values 🛛 🛛 (Bilbao, Lebrón & Jiménez '98)
- 🔶 Cores 🛛 🛛 (Bilbao, Lebrón & Jiménez '99, Okamoto '02)
 - (Bilbao, Jiménez, Lebrón & Peters '00)

Cooperative games

Selectopes

Every set of players can form a coalition

Cooperative games on convex geometries (Bilbao)

A member in a convex geometry can only be a coalition (based on Faigle & Kern '92)

🔶 Power indices 🛛 (Edelman '97, Bilbao, Jiménez & Lopéz '98)

- 🔶 Shapley values 🛛 (Bilbao '98, Bilbao & Edelman '00)
- 🔶 Probabilistic values 🛛 🛛 (Bilbao, Lebrón & Jiménez '98)
- 🔶 Cores 🛛 🛛 (Bilbao, Lebrón & Jiménez '99, Okamoto '02)
 - (Bilbao, Jiménez, Lebrón & Peters '00)

Background

- Gray code for the linear extensions of a poset
 ⇒ an efficient enumeration!!
- ⇒ an efficient enumeration!!
 Linear extensions of a poset
 - = Removing sequences in a poset shelling
- Pruesse & Ruskey '93
 - Considered Gray code for convex geometries for enumeration of removing sequences in a convex geometry
- Chandran, Ibarra, Ruskey & Sawada '03
 - Application for the enumeration of simplicial elimination orderings in a chordal graph
 - Enables the constant amortized time enumeration

Background

- Gray code for the linear extensions of a poset \Rightarrow an efficient enumeration!!
- ⇒ an efficient enumeration!!
 Linear extensions of a poset
 = Removing sequences in a poset shelling
- Pruesse & Ruskey '93
 - Considered Gray code for convex geometries for enumeration of removing sequences in a convex geometry
- Chandran, Ibarra, Ruskey & Sawada '03
 - Application for the enumeration of simplicial elimination orderings in a chordal graph
 - Enables the constant amortized time enumeration

Background

- Gray code for the linear extensions of a poset \Rightarrow an efficient enumeration!!
- ⇒ an efficient enumeration!!
 Linear extensions of a poset
 = Removing sequences in a poset shelling
- Pruesse & Ruskey '93
 - Considered Gray code for convex geometries for enumeration of removing sequences in a convex geometry
- Chandran, Ibarra, Ruskey & Sawada '03
 - Application for the enumeration of simplicial elimination orderings in a chordal graph
 - Enables the constant amortized time enumeration

Definition and Examples	(15 min.)
Basic Concepts I	(5 min.)
Classification	(15 min.)
Basic Concepts II	(15 min.)
Others	(5 min.)
Summary	(1 min.)

Summary

42

Summary

42

Theory of convex geometries

appears in many guises (by different names).

Summary

42

- appears in many guises (by different names).
- ♦ is activated by some recent results.

Summary

42

- appears in many guises (by different names).
- ♦ is activated by some recent results.
- leaves many open questions.

Summary

42

- appears in many guises (by different names).
- ♦ is activated by some recent results.
- leaves many open questions.
- sheds light to matroid theory as well.

Summary

42

- appears in many guises (by different names).
- is activated by some recent results.
- leaves many open questions.
- sheds light to matroid theory as well.
- does not have enough people working on.

Summary

42

- appears in many guises (by different names).
- ♦ is activated by some recent results.
- leaves many open questions.
- sheds light to matroid theory as well.
- does not have enough people working on.
- is looking forward to your contributions.

Thank you very much.

43

Slides will be obtained from http://www.inf.ethz.ch/personal/okamotoy/ or by email to

okamotoy@inf.ethz.ch