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{/ Question

How many interior points are there
in a finite point configuration P?
o0

An Euler-type formula:
4 of int. pts in P = (—1)¢"] Z (—1)AA]

free ACP



Y/ An Euler-type formula

# ofint. ptsin P = (14" K (=1)MA]

free ACP

Proved by:

® Ahrens, Gordon & McMahon (DCG '99)
for d = 2, geometric proof

¢ Klain (Adv Math '99)
for general d, using a valuation
¢ Edelman & Reiner (DCG '00)

for general d, topological proof
»—— making use of free complexes




3/ Free sets in a point configuration

P a finite point configuration in IR,

m X C P is free if

¢ conv( X) NP =X (convexity)

& the extreme points of conv(X) = X
(the points of X lie in convex position)
(independence).



v/ Free complex of a point configuration

The free complex of P is

the family of all free sets in P,
denoted by Free(P).

Remark | Free(P) is a simplicial complex.
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i/ Proof by Edelman & Reiner

P a finite point configuration in IR¢

Consider the free complex Free(P) of P.

In Edelman & Reiner's proof, it was a key that

¢ delgee(p)(X) is contractible
if x € P lies on the bd of conv(P)
(implying )Z(delFree(P) (X)) — O),
¢ delgo(p)(Xx) has the integral homology
of a (d — 1)-dim sphere
if x € P lies in the interior of conv(P)

(implying f((delFree(P) (X)) — (_1 )d—1 )



S/ Proof by Edelman & Reiner: Example
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{/ Question by Edelman & Reiner

How about a generalization to
abstract convex geometries??

This work

¢ Study on their problems for a special case
(2-dim generalized convex shellings).

¢ Result for this special case.



Y/ Talk plan

(1) (Abstract) convex geometries and
Free complexes

(2) Questions by Edelman & Reiner
for (abstract) convex geometries

(3) 2-dim generalized convex shellings
(4) Results



Y/ Convex geometries (Edelman & Jamison '85)

E a nonempty finite set,
L C 2% a family of subsets of E.

L is called a convex geometry on E
if L satisfies the following conditions.

(1) Ve L, Ee€ L.
(2) X, Ye L=XNYecL
(3) Xe L\{E}=de e E\X: XU{e} € L.

X C E is called convex if X € L.




W/ Example 1: convex shelling

P a finite point set in IR¢.
Define: £ ={X C P :conv(X) NP =X}
1234

34

L is called the convex shelling on P.



"V Example 2: poset shelling

P = (E, <) a partially ordered set.
Define: L={X CE:ee X, {f<e=1fec X}

1234
3 4
®
123 124
12 24
[
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L is called the poset shelling of P.



R/ Other examples

Convex geometries arise from various objects.
¢ From graphs

Tree shellings
Graph searches
Simplicial elimination of chordal graphs

¢ From partially ordered sets

Poset double shellings
k-chains

& From finite point sets in IR¢

Lower convex shellings
¢® From oriented matroids
Convex shellings of acyclic OMs

¢ ..



3/ Free sets in a convex geometry

L a convex geometry on E.

| Def. | X C Eis free in £ if

¢ Xel (convexity)

¢ the set of “extreme points’ of X = X
(independence).



Y/ Extreme points

L a convex geometry on E, X € £ a convex set.

Def. | e € X is an extreme point of X
if X\ {e} € L.
1234

X=1{2,3,4te L

2  extreme
3 not extreme
4  extreme

X is independent if every e € X is extreme in X.



1?/ Free complex of a convex geometry

The free complex Free(L) of L is

the family of all free sets in L,

Remark | Free(L) is a simplicial complex.

1234

34

L Free(L)



1{’/ Convex geometries and point configurations

Remark

P a point configuration in IR,
L the convex shelling of P.

Then
Free(P) = Free(L).
To generalize Edelman & Reiner’s result,

We also need to generalize
“the boundary” and “the interior.”

—> a concept of “dependency sets”
(we omit the definition).



1{/ Dependency sets and convex geometries

P a point configuration in R¢
L the convex shelling of P.

Dep-(e) the dependency set of e € P in L.
Then

¢ ¢ lies on the boundary of conv(P)
& Dep,(e) #P.

¢ ¢ lies in the interior of conv(P)
& Dep,(e) =P.

This leads to the following open problems.



1%/ Open problems by Edelman & Reiner

Open Problems (Edelman & Reiner '00)

E a finite set; £ a convex geometry on E.

(1) Is delgee( ) (x) contractible
if Dep,(x) #E?
(2) Is delgee()(x) homotopy equivalent to

a bouquet of equidimensional spheres

a bouquet of . o 2 bouquet of a bouquet of
eight 1-dim _ _  six 0-dim o zero sphere
spheres e e Spheres



12/ Partial results in the literature

Both problems have been solved affirmatively
for the following classes of convex geometries.

& Convex shellings of point configurations
(Edelman & Reiner '00, Dong '02)

& Poset double shellings (Edelman & Reiner '00)

& Simplicial eliminations of chordal graphs
(Edelman & Reiner '00)

& Conv shellings of acyclic oriented matroids
(Edelman, Reiner & Welker '02)

& Poset shellings. (Easy)



2/ Our results

Consider another class of convex geometries,
the 2-dim separable generalized convex shellings.

(1) If Dep,(x) #E,
delgee( ) (X) is contractible.

(2) If Dep,(x) =E,
delgee( ) (X) is either contractible

or homotopy equiv to a 0-dim sphere.

Verifies Open Problems for this special case!

Gives the first example of £ and x s.t.
delrree( ) (x) is contractible & Dep,(x) = E.



3/ Generalized convex shelling

P,Q point sets in IRY with P N conv(Q) = 0.

Define:
L={XCP:conv(XUQ)NP=X].

A . q 1234
|
o 134 234
i 14 34
@ @ O
2 3 4 q, | 4
- )

L is a convex geometry on P and called
the generalized conv shelling on P w.r.t. O.



2%/ Technical terminology
P,Q point sets in IR with P N conv(Q) = 0,

L the generalized convex shelling on P w.r.t. Q.

¢ L is 2-dimensional if d = 2.
& L is separable if conv(P) Nconv(Q) = ().

O a non-separable case



3/ Why separable generalized convex shellings?

(Kashiwabara, Nakamura & Okamoto, '03)

For every convex geometry L,
there exist point sets P, Q with

conv(P) Nconv(Q) = 0 s.t.
L = the gen conv shelling on P w.r.t. O.

(Separable generalized convex shellings
represent all convex geometries.)

»—— T he 2-dim case Is a first step
for resolution of Open Problems.



2/ Our results (again)

L the 2-dim sep gen conv shelling on P w.r.t. O,
x € P.

(1) If Dep,(x) # P,

delgee( ) (X) is contractible.

(2) If Dep,(x) =
delpree(c) (X) is elther contractible
or homotopy equiv to a 0-dim sphere.



S/ Problems are still open

¢® We don’t know yet

the problems are affirmative or
negative in the general case!

¢ How about a 3-dim case??
¢ How about a non-separable 2-dim case??



Zf/ Acknowledgements

The speaker wants to thank

the financial support for Eurocomb’03

by DIMATIA and
the European project COMBSTRU.

COMBSTRU



Dékuji vam mnohokrat.

>



Here are extra slides for possible questions
from the audience.



2/ Closure operators, extreme point operators

L a convex geometry on E.

Def. | The closure operator

T, : 2F — 2% is defined as

e (A)=(XeL:ACX]

Def. | The extreme point operator

ex, : 25 — 2F is defined as

exg(A) =lee A:e g Te(A\1ef)).



Y/ Dependency sets

L a convex geometry on E.

[Def.| A CE isindependent if ex;(A) = A.

Def.| The dependency set of e € E in L is

3 Independent A s.t.
Dep,(e) =< febk: feAeects(A),
e & To(A\{fH



W Outline of the proof

L the 2-dim sep gen conv shelling on P w.r.t. O,
Q #0.
(1) Free(L) is the clique complex of a graph G.
|.e., the family of all cliques of G.
(2) G is chordal & connected.
Chordal & every ind. cycle is C3.
(3) (2) = Free(L) contractible.

(4) G —x has at most 2 connected components.
(5) x a cut-vertex of G = Dep,(x) =P.




