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What is all about?

. Framework:Framework: Several people are willing to work together...

�� They want to have a largest possible benefit.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . optimization problem

�� They want to allocate the benefit in a fair way.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . game-theoretic problem

. Game Theory?Game Theory?

�� Noncooperative Game Theory
�� Cooperative Game Theory
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Cooperative games

. Def.:Def.: A cooperative game (or a game) is a pair (N,γ) of

�� a finite set N (set of players)

�� a function γ : 2N → IR with γ(∅) = 0
(characteristic function).

. Interpretation:Interpretation: For S ⊆ N,

γ(S) represents

{
the max. benefit gained by S
the min. cost owed by S

}

when the players in S work in cooperation.

. Goal:Goal: To allocate γ(N) to each player in a “fair” way.

. This work:This work: study on “minimum coloring games.”
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Definition: minimum coloring game

G = (V, E) an undirected graph

�� A proper k-coloring of G

is a surjective map c : V → {1, . . . , k} s.t.
if {u, v} ∈ E, then c(u) 6= c(v).

�� The chromatic number χ(G) of G

= min{ k : a proper k-coloring of G exists }.

�� The minimum coloring game on G

is a cooperative game (V, χG).

χG : 2V → IN is defined as χG(S) = χ(G[S]),
where G[S] is the subgraph induced by S ⊆ V .
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Example: minimum coloring game

χG(S) = χ(G[S]) for S ⊆ V .

1

2

4

5

3

S χG S χG S χG S χG

∅ 0 14 1 123 2 245 2
1 1 15 2 124 2 345 2
2 1 23 2 125 3 1234 2
3 1 24 1 134 2 1235 3
4 1 25 2 135 2 1245 3
5 1 34 2 145 2 1345 2

12 2 35 1 234 2 2345 2
13 1 45 2 235 2 12345 3

. Goal:Goal: To allocate χ(G) to each vertex in a fair way.
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Background: model of conflicts

Conflict graph: a model of conflict

�� the vertices = the agents, the principals...

�� the edges = between two in conflict.

min. coloring game:

a simplest model of the
fair cost allocation problem
in conflict situations
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Objective of our work

We study minimum coloring games, and
investigate the following kinds of fairness concepts:

�� Core (Gillies ’53)

�� Nucleolus (Schmeidler ’69)

�� τ-value (Tijs ’81)

�� Shapley value (Shapley ’53).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Past works on minimum coloring games:

�� Deng, Ibaraki & Nagamochi ’99
�� Deng, Ibaraki, Nagamochi & Zang ’00
�� Okamoto ’03

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Why minimum coloring games??
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Background: Operations Research

Fair cost allocation problems are studied in OR community
from the game-theoretic viewpoint.

�� Megiddo ’87

First noticed the computational issue
in fair cost allocation problems.

�� So far, a lot of results have appeared in

Mathematics of Operations Research,
Mathematical Progrmming,
Mathematical Methods of Operations Research,
Discrete Applied Mathematics,
International Journal of Game Theory,
Games and Economic Behaviours,
etc.

�� They assume practical applications.
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Background: Algorithmic game theory

There are many kinds of “fairness” concepts
(called “solutions”) in cooperative game theory.

. Thesis:Thesis: Bounded Rationality (Simon ’70s)

Decisions by realistic economic agents cannot
involve unbounded resources for reasoning.

. Thesis:Thesis: (Deng & Papadimitriou ’94)

[Economic concept] [Algorithmic concept]
A solution follows ' Computation can be

Bounded Rationality done in poly. time

=⇒ Algorithmic study of cooperative game theory
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Background: Set functions

E a finite set

. Def.:Def.: A set function on E is a function f : 2E → IR.

. Appearance:Appearance:

�� Cooperative game theory

�� Combinatorial optimization

�� Pseudo-boolean functions

�� Nonadditive measure theory (fuzzy measure theory)

�� ...

They study different aspects of set functions.
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Scope of today’s talk

Focus on cores and nucleoli of minimum coloring games

�� Def.: cost allocation
�� Def.: nucleolus
�� Characterization: the nucleolus for a chordal graph
�� Open problems
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Cost allocation in a min coloring game

. Def.:Def.: A cost allocation for a game (N,γ) is

a vector z ∈ IRN such that
∑

{z[ i ] : i ∈ N} = γ(N).

(Often in cooperative game theory, this is called a pre-imputation.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Q.Q. What kinds of cost allocations are considered fair??

...... Core, Nucleolus, τ-value, Shapley value, etc.
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Excess

Let (N,γ) a game

z ∈ IRN a cost allocation
S ⊆ N (often called a coalition)

. Def.:Def.: An excess e(S, z) is defined as

e(S, z) :=
∑

i∈S
z[ i ] − γ(S).

. Interpretation:Interpretation: The smaller e(S, z), the happier S with z.

∑

i∈S
z[ i ] :

cost owed to S
when people in N work together

γ(S) :
cost owed to S
when people in S work together.
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Enumerating the excesses...

Let (N,γ) be a game, z ∈ IRN a cost allocation

Consider the following procedure.

�� Enumerate e(S, z) for all S ∈ 2N \ {∅,N}.
Arrange these excesses in non-increasing order

to obtain θz ∈ IR2
|N|−2. (θz[ i ] ≥ θz[ j ] if i ≤ j.)

. Example:Example:

z =

(
1,
1

2
,
1

2

)>

θz =

(
1

2
, 0,−

1

2
,−
1

2
,−
1

2
,−1

)>

S γ(S) e(S, z)

∅ 0 (0)
{1} 1 0

{2} 1 −1/2
{3} 1 −1/2

{1, 2} 1 1/2

{1, 3} 2 −1/2
{2, 3} 2 −1

{1, 2, 3} 2 (0)
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Nucleolus

. Def.:Def.: The nucleolus of (N,γ) is defined as

ν(N,γ) =

{
z ∈ IRN :

z lex-mins θz over all cost alloc’s y
s.t. y[ i ] ≤ γ({i}) ∀i ∈ N

}
.

. Interpretation:Interpretation: The smaller e(S, z), the happier S with z.

⇒ Want an allocation which minimizes max excess.

. Thm.Thm. (Schmeidler ’69)

The nucleolus consists of a single vector.

So we usually say ν(N,γ) = z instead of ν(N,γ) = {z}.
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Example: nucleolus

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

ν =

(
1

2
,
1

2
, 1

)>
is the nucleolus.

θν =

(
0, 0,−

1

2
,−
1

2
,−
1

2
,−
1

2

)>
.

S {1} {2} {3} {1, 2} {1, 3} {2, 3}

γ(S) 1 1 1 1 2 2

e(S,ν) −1/2 −1/2 0 0 −1/2 −1/2

e(S,ν) :=
∑

i∈S
ν[ i ] − γ(S).
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Example: nucleolus

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

ν =

(
1

2
,
1

2
, 1

)>
is the nucleolus.

θν =

(
0, 0,−

1

2
,−
1

2
,−
1

2
,−
1

2

)>
.

. Fact:Fact: the core is nonempty (i.e., the game is balanced)

⇒ the nucleolus ∈ the core.

. Def.:Def.: A cost allocation z ∈ the core of (N,γ)

if e(S, z) ≤ 0 (∀ S ⊆ N).
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Example: nucleolus

z[ 1 ]
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z[ 3 ]
3

21

ν =

(
1

2
,
1

2
, 1

)>
is the nucleolus.

θν =

(
0, 0,−

1

2
,−
1

2
,−
1

2
,−
1

2

)>
.

Let z = λ(1, 0, 1)> + (1− λ)(0, 1, 1)> (0 ≤ λ ≤ 1)
= (λ, 1− λ, 1)>.

S {1} {2} {3} {1, 2} {1, 3} {2, 3}

γ(S) 1 1 1 1 2 2

e(S,z) λ− 1 −λ 0 0 λ − 1 −λ
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Computation of the nucleolus

. Thm.Thm. (Kuipers ’96, Faigle, Kern & Kuipers ’01)

The nucleolus can be computed in polynomial time
for submodular games.

. Thm.Thm. (Okamoto ’03)

χG is submodular ⇔ G is complete multipartite.

. Cor.Cor.

G complete multipartite
⇒ the nucleolus of χG computed in poly. time.
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Correspondence

On the computation of the nucleolus of a min coloring game

Graph ↔ Min col. game

general NP-hard

⊆
zero duality gap ???

⊆

perfect ???

⊆

complete multipartite Poly

17
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Nucleolus of a min coloring game

. Obs.Obs. The computation of the nucleolus of a min coloring

game is NP-hard.

. ProofProof Suppose we get the nucleolus ν in poly time.

⇒ Compute
∑

i∈V
ν[ i ] = χ(G).

⇒ We have obtained χ(G) in poly time.

⇒ P = NP. [qed]
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Correspondence
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Correspondence

On the computation of the nucleolus of a min coloring game

Graph ↔ Min col. game

general NP-hard

⊆
zero duality gap ???

⊆

perfect ???

⊆

O-good characterization

⊆

complete multipartite Poly
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O-good perfect graphs

. Thm.Thm.

The nucleolus for an O-good perfect graph G
is the barycenter of the characteristic vectors of
the maximum cliques of G.

Namely,

ν[ i ] =
# of maximum cliques containing i

# of maximum cliques
.
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O-good perfect graphs

. Thm.Thm.

The nucleolus for an O-good perfect graph G
is the barycenter of the characteristic vectors of
the maximum cliques of G.

. Remark:Remark:

(1) We omit the def. of O-good perfect graphs.

(2) The class of O-good perfect graphs contains

�� the graphs with unique maximum cliques
�� the complete multipartite graphs
�� the chordal graphs (especially the forests).

(3) A graph is chordal if every induced cycle is of length 3.
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Example: nucleolus

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

ν =

(
1

2
,
1

2
, 1

)>
is the nucleolus.

θν =

(
0, 0,−

1

2
,−
1

2
,−
1

2
,−
1

2

)>
.

Indeed, this graph is

{
a forest
complete multipartite.
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Example: nucleolus

Consider a complete multipartite graph.

1/3
1/3

1/3

1/2

1/3

1/2

1/31/3

We have

ν[ i ] =
1

ni
,

where ni is # of vertices of the class to which i belongs.
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Example: nucleolus

Consider a forest.

3/16

3/16

1/16

1/8

1/16
1/4

1/16

1/16

1/16

1/16

1/8

1/8

1/8 1/8

1/8

3/16

1/16

We have

ν[ i ] =
deg(i)

|E|
,

where deg(i) is # of edges incident to i.
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Example: nucleolus

For chordal graphs, we can use the following theorem
to compute the nucleoli.

. Thm.Thm. (Fulkerson & Gross ’65)

In a chordal graph,
# of maximal cliques ≤ # of vertices.

We can enumerate them in poly time.

. Proof SketchProof Sketch

1 3 6 2 4 56

1 3

4

2

5
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Outline of the proof

(1) Use the LP formulation for the nucleolus computation.
(Peleg)

By solving a sequence of LP problems, we can
obtain the nucleolus (not in poly time).

(2) Identify the essential coalitions. (Huberman ’80)
The essential coalitions reduce the work load.
S ⊆ V is essential ⇔ S is an independent set.

(3) Analyze the LP.
For O-good perfect graphs, we can precisely tell
what are the optimal solutions in the LP problems
with help of the characterization of the extreme
points of the core.
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Summary: the nucleolus

bipartiteforests

graphs

zero integrality gap

perfect

complete
chordal

multipartite
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Example: bipartite graph

There is a bipartite graph for which the nucleolus is not
the barycenter of the char. vectors of the maximum cliques.

2/3 1/3

1/31/31/3
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The state of the art

Core Nucleolus

bipartiteforests

graphs

zero integrality gap

perfect

complete
chordal

multipartite bipartiteforests

graphs

zero integrality gap

perfect

complete
chordal

multipartite

τ-value Shapley value

bipartiteforests

graphs

zero integrality gap

perfect

complete
chordal

multipartite bipartiteforests

graphs

zero integrality gap

perfect

complete
chordal

multipartite
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Open problems: minimum coloring games

Computation of the nucleoli for

�� perfect graphs ??
�� bipartite graphs ??
�� outerplaner graphs ??
�� cographs ??
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Conclusion

The list of what we discussed

�� Def.: minimum coloring game
�� Def.: nucleolus
�� Characterization: the nucleolus for a chordal graph
�� Open problems
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Research paradigm

. Framework:Framework: Several people are willing to work together...

�� They want to have a largest possible benefit.
(optimization theory)

�� They want to allocate the benefit in a fair way.
(cooperative game theory)

. StatusStatus of algorithmic problems on cooperative games

�� As many cooperative games as optimization problems!!
�� Many algorithmic problems remain unsolved!!

=⇒ Why not work on them??

[End of the talk]
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