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What is all about?

v
Several people are willing to work together...

¢ They want to have a largest possible benefit.
................................. optimization problem

¢ They want to allocate the benefit in a fair way.
............................... game-theoretic problem

¢ Noncooperative Game Theory

Cooperative Game Theo
¢ perativ m ry ;@@@@;




Y/ Cooperative games

A cooperative game (or a game) is a pair (N,vy) of

¢ a finite set N (set of players)
¢ a function v : 2N — IR with y(0) =0
(characteristic function).

Interpretation: | For S C N,

(S) represent the max. benefit gained by S
Y SPFESENS 9 the min. cost owed by S

when the players in S work in cooperation.



Y/ Cooperative games

A cooperative game (or a game) is a pair (N,vy) of

¢ a finite set N (set of players)

¢ a function v : 2N — IR with y(0) =0
(characteristic function).

Interpretation: | For S C N,

(S) represent the max. benefit gained by S
Y SPFESENS 9 the min. cost owed by S

when the players in S work in cooperation.

Goal: | To allocate y(N) to each player in a “fair” way.

study on “minimum coloring games.”



3/ Definition: minimum coloring game

G = (V, E) an undirected graph

¢ A proper k-coloring of G

is a surjective mapc:V —{1,...,k}s.t.

if {u,v} € E, then c(u) # c(v).
& The chromatic number x(G) of G

= min{ k : a proper k-coloring of G exists }.
¢ The minimum coloring game on G

is a cooperative game (V,x¢g).

xG :2Y — IN is defined as xc(S) = x(GI[S]),
where G|S] is the subgraph induced by S C V.



v/ Example: minimum coloring game
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Goal: | To allocate x(G) to each vertex in a fair way.



3/ Background: model of conflicts

Conflict graph: a model of conflict
& the vertices = the agents, the principals...

¢ the edges = between two in conflict.

min. coloring game:
/ a simplest model of the
fair cost allocation problem
/ in conflict situations




Y/ Objective of our work

We study minimum coloring games, and
investigate the following kinds of fairness concepts:

¢ Core (Gillies '53)
¢ Nucleolus (Schmeidler '69)
¢ T-value (Tijs '81)
& Shapley value (Shapley '53).

Past works on minimum coloring games:

¢ Deng, Ibaraki & Nagamochi 99
¢ Deng, Ibaraki, Nagamochi & Zang '00
¢ Okamoto '03
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Why fair cost allocation problems??



{/ Background: Operations Research

Fair cost allocation problems are studied in OR community
from the game-theoretic viewpoint.

¢ Megiddo '87

First noticed the computational issue
in fair cost allocation problems.

& So far, a lot of results have appeared in

Mathematics of Operations Research,

Mathematical Progrmming,

Mathematical Methods of Operations Research,
Discrete Applied Mathematics,

International Journal of Game Theory,

Games and Economic Behaviours,

etc.

& They assume practical applications.



%/ Background: Algorithmic game theory

There are many kinds of “fairness’ concepts
(called “solutions”) in cooperative game theory.

Thesis: | Bounded Rationality (Simon '70s)

Decisions by realistic economic agents cannot
involve unbounded resources for reasoning.

Thesis: | (Deng & Papadimitriou '94)

|[Economic concept] [Algorithmic concept]
A solution follows ~  Computation can be
Bounded Rationality done in poly. time

—> Algorithmic study of cooperative game theory



Y/ Background: Set functions

E a finite set

A set function on E is a function f:2F — IR.

Appearance:

& Cooperative game theory

¢ Combinatorial optimization

¢ Pseudo-boolean functions

¢ Nonadditive measure theory (fuzzy measure theory)

¢ ..
They study different aspects of set functions.



13/ Scope of today’s talk

Focus on cores and nucleoli of minimum coloring games

& Def.: cost allocation
¢ Def.: nucleolus
& Characterization: the nucleolus for a chordal graph

¢ Open problems
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VA Cost allocation in a min coloring game

m A cost allocation for a game (N,vy) is
a vector z € R" such that

Y {z[i]:1€ N} =vy(N).
(Often in cooperative game theory, this is called a pre-imputation.)

Q. | What kinds of cost allocations are considered fair??

...... Core, Nucleolus, t-value, Shapley value, etc.
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R/ Excess

Let (N,y)  agame
z c RN 2 cost allocation
SCN (often called a coalition)

Def.: | An excess e(S, z) is defined as

e(S,z) == ) z[il —y(S).

1€eS

Interpretation: | The smaller e(S, z), the happier S with z.

Z 2] cost owed to S
| when people in N work together

ieS
cost owed to S
Y(S) v

when people in S work together.
12



1%/ Enumerating the excesses...

Let (N,v) be a game, z € R" a cost allocation
Consider the following procedure.

¢ Enumerate e(S,z) for all S € 2N\ {(, N}.

S Y(S) e(S,z)

‘ Example: \ — o0 (0
‘ 0

{1}
1 1\ " {2} ‘ —1/2
Z = (1>Z>2) {3} 4 _1/2
{1,2} ‘ 1/2
{1, 3} 2 —1/2
{2,3]} 2 —1
{,2,3, 2 (0)

13



1%/ Enumerating the excesses...

Let (N,v) be a game, z € R" a cost allocation
Consider the following procedure.

¢ Enumerate e(S,z) for all S € 2N\ {(, N}.
® Arrange these excesses in non- mcreasing order

to obtain 0, E]RZIIZ (0-[1] > 0,[j] if1 <))
S v(S) e(S,z)

‘ Example: \ — o0 (0
‘ 0

{1}
1 T {2} ‘ —1/2
{1,2} ‘ 1/2
] 11 ] o3y 2 —n
0, = (Z>O>_Z>_Z>_Z>_1> {2,3]} 2 —1

{1,2,3} 2 (0)
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Y/ Nucleolus

Def.: | The nucleolus of (N,vy) is defined as

z lex-mins ©, over all cost alloc’'s y

vINY) = {ZE]RN: st.yli] < v({i}) ¥ieN

Interpretation: | The smaller e(S, z), the happier S with z.

— Want an allocation which minimizes max excess.

b

14



Y/ Nucleolus

Def.: | The nucleolus of (N,vy) is defined as

_ N . Z lex-mins ©; over all cost alloc’'s y
V(N>V)—{Z€R st yli] <v({i) VieN }

Interpretation: | The smaller e(S, z), the happier S with z.

— Want an allocation which minimizes max excess.

(Schmeidler '69)

The nucleolus consists of a single vector.

So we usually say v(N,vy) = z instead of v(N,v) ={z}.

14



Ii/ Example: nucleolus

: z[ 3]
%- /\
1 2

vV = 11I T' th leol
=77 is the nucleolus.
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S _ T
72 9, — (O,O,_l,_l,_l _l) |

2720 2 2

S ) 2y 3y {1,2) {1,3) {2,3)

Y(S ] ] ] ] 2 2
e(Sv) | =12 —12 o o —1/2 —1,2
e(S,v) = Zv[i]—y(S).
ieS
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Example: nucleolus

11\
v=|=-,=,1 is the nucleolus.

- 1 1 1 1\'
2] — o
eV (O)O) 2) 2) 2) 2) .

the core is nonempty (i.e., the game is balanced)

— the nucleolus & the core.

m A cost allocation z € the core of (N,v)

if e(S,z) <0

(VS CN).
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1i/ Example: nucleolus

|

|

: 2’2

P - - 11 1 1\'
- Z[Z] — -
e ¥ (O’O’ 2’ 20 2 z)
z[ 1]
Let z=A(1,0,1)" + (1 —=A)(0,1,1)" (0<ALT)
:(}\>1_)\>1)T
S a2y 3F L,2p (1,3 12,3}

) 1 T 1 1 2 2
e(S,z) | A—=1 —A 0 0 A—1 —A
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1i/ Example: nucleolus

o _ J(0,0,=AAA=TA=T)T f0<A<1/2
2T V0,00 =T A—T1,-A AT if1/2<A<]
S ay {2y {3 11,2} 1,3} 12,3}

) | 1 | 1 2 2
e(S,z) |A—1 —A O 0 A—1 —A
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1%/ Computation of the nucleolus

(Kuipers '96, Faigle, Kern & Kuipers '01)

The nucleolus can be computed in polynomial time
for submodular games.

(Okamoto '03)

X G 1s submodular & G is complete multipartite.

Cor.

G complete multipartite
— the nucleolus of xg computed in poly. time.

16



X/ Correspondence

On the computation of the nucleolus of a min coloring game

Graph &~  Min col. game
general NP-hard
UI
zero duality gap 277
UI
perfect 7?7
UI
complete multipartite Poly

17



Y/ Nucleolus of a min coloring game

Obs. | The computation of the nucleolus of a min coloring
game Is NP-hard.

Suppose we get the nucleolus v in poly time.

— Compute Zv[i] = x(G).
ieVv
— We have obtained x(G) in poly time.

18



R/ Correspondence

On the computation of the nucleolus of a min coloring game

Graph &~  Min col. game
general NP-hard
UI
zero duality gap 277
UI
perfect 7?7
UI
complete multipartite Poly
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2/ Correspondence

On the computation of the nucleolus of a min coloring game

Graph &~  Min col. game
general NP-hard
UI
zero duality gap 2707
UI
perfect 7?7
UI
O-good characterization
UI
complete multipartite Poly

20



R O-good perfect graphs

Thm.

The nucleolus for an O-good perfect graph G
Is the barycenter of the characteristic vectors of
the maximum cliques of G.

Namely,

] # of maximum cliques containing 1
Vi) =

# of maximum cliques

21



2/ O-good perfect graphs

Thm.

The nucleolus for an O-good perfect graph G
Is the barycenter of the characteristic vectors of
the maximum cliques of G.

Remark:

(1) We omit the def. of O-good perfect graphs.

(2) The class of O-good perfect graphs contains

& the graphs with unique maximum cliques
¢ the complete multipartite graphs

& the chordal graphs (especially the forests).

(3) A graph is chordal if every induced cycle is of length 3.

21



Example: nucleolus

Indeed, this graph is {

3
RS I
— (=, = ' lus.
2% (2’ 2,1) is the nucleolus

LA == . 11 1 1\
- z[2] — -
/ ev (O>O> 2> z) 2) 2) y

a forest
complete multipartite.

22



zi/ Example: nucleolus

Consider a complete multipartite graph.

We have

where n; is # of vertices of the class to which 1 belongs.

23



2é\l/ Example: nucleolus

Consider a forest.
1/8

1/8

1/16 1/16

3/16 1/8 1/16

We have deg(i
. eg(1
v[i] = |
E|

where deg(1i) is # of edges incident to 1.

24



2i/ Example: nucleolus

For chordal graphs, we can use the following theorem
to compute the nucleoli.

(Fulkerson & Gross '65)

In a chordal graph,
# of maximal cliques < # of vertices.
We can enumerate them in poly time.

Proof Sketch

1 2 3 %
1 3 6 2 4 3)

6 3} 4
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2/ Outline of the proof

(1) Use the LP formulation for the nucleolus computation.

(Peleg)
By solving a sequence of LP problems, we can

obtain the nucleolus (not in poly time).

(2) ldentify the essential coalitions. (Huberman '80)

The essential coalitions reduce the work load.
S C V is essential & S is an independent set.

(3) Analyze the LP.

For O-good perfect graphs, we can precisely tell
what are the optimal solutions in the LP problems
with help of the characterization of the extreme
points of the core.
26



%/

Summary: the nucleolus

graphs
4 | | A
zero integrality gap
4 A
perfect
4 A
chordal
complete e \
multipartite forests | bipartite
[ ] [ \ ]
- ~ < y,
- y,
- y,
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2%/ Example: bipartite graph

There is a bipartite graph for which the nucleolus is not
the barycenter of the char. vectors of the maximum cliques.

2/3 1/3

1/3 1/3 1/3

28



zz/ The state of the art

Core Nucleolus
graphs graphs
~ R ~ R
zero integrality gap zero integrality gap
e R e R
perfect perfect
e e
chordal chordal
complete complete
% forests) bipartite % forests) bipartite
% [ ] ] y L [ ] ] y
\ Y, \ Y,
\ Y, \ Y,
T-value Shapley value
graphs graphs
~ R ~ R
zero integrality gap zero integrality gap
e R e R
perfect perfect
e R e R
chordal chordal
complete complete
% forests) bipartite % forests) bipartite
% [ ] ] y L [ ] ] y
\_ Y, \_ Y,
\ Y, \ Y,
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%/ Open problems: minimum coloring games

Computation of the nucleoli for
& perfect graphs 77
¢ bipartite graphs 77
& outerplaner graphs 77
& cographs 77

30



N/ Conclusion

The list of what we discussed

¢ Def.: minimum coloring game

¢ Def.: nucleolus
& Characterization: the nucleolus for a chordal graph

¢ Open problems

31



A Research paradigm

Several people are willing to work together...

¢ They want to have a largest possible benefit.
(optimization theory)

¢ They want to allocate the benefit in a fair way.
(cooperative game theory)

of algorithmic problems on cooperative games

® As many cooperative games as optimization problems!!
& Many algorithmic problems remain unsolved!!

32



A Research paradigm

Several people are willing to work together...

¢ They want to have a largest possible benefit.
(optimization theory)

¢ They want to allocate the benefit in a fair way.
(cooperative game theory)

of algorithmic problems on cooperative games

® As many cooperative games as optimization problems!!
& Many algorithmic problems remain unsolved!!

— Why not work on them??

[End of the talk]
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