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() Question

How many interior points are there
in a finite point configuration P?

An Euler-type formula:

# of int. pts in P = (−1)d−1
∑

free A⊆P
(−1)|A||A|.
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() An Euler-type formula

# of int. pts in P = (−1)d−1
∑

free A⊆P
(−1)|A||A|.

Proved by:

�� Ahrens, Gordon & McMahon (DCG ’99)
for d = 2, geometric proof
Conj.: This formula holds for general d. for
general d, using a valuation
Edelman & Reiner (DCG ’00)

for general d, topological proof
→→→ making use of free complexes

2



2
p

() An Euler-type formula

# of int. pts in P = (−1)d−1
∑

free A⊆P
(−1)|A||A|.

Proved by:

�� Ahrens, Gordon & McMahon (DCG ’99)
for d = 2, geometric proof

�� Klain (Adv Math ’99)
for general d, using a valuation

�� Edelman & Reiner (DCG ’00)

for general d, topological proof
→→→ making use of free complexes
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() Free sets in a point configuration

P a finite point configuration in IRd.

. Def.Def. X ⊆ P is free if

�� conv(X) ∩ P = X (convexity).

�� the extreme points of conv(X) = X
(the points of X lie in convex position)
. (independence).
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() Free complex of a point configuration

. Def.Def. The free complex of P is

. Def.Def. the family of all free sets in P,

. Def.Def. denoted by Free(P).

. RemarkRemark Free(P) is a simplicial complex.

the facets of Free(P)
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() Proof by Edelman & Reiner

P a finite point configuration in IRd

Consider the free complex Free(P) of P.

In Edelman & Reiner’s proof, it was a key that

delFree(P)(x) is contractible
if x ∈ P lies on the bd of conv(P)

(implying χ̃(delFree(P)(x)) = 0),

delFree(P)(x) has the integral homology
of a (d−1)-dim sphere
if x ∈ P lies in the interior of conv(P)

(implying χ̃(delFree(P)(x)) = (−1)d−1).
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() Proof by Edelman & Reiner: Example

a 1-dim sphere

'

'

delFree(P)(3)

delFree(P)(6)

a single point

Free(P)
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() Question by Edelman & Reiner

. Q.Q.

How about a generalization to
abstract convex geometries??

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This work

�� Study on their problems for a special case
(2-dim generalized convex shellings).

�� Result for this special case.
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() Talk plan

(1) (Abstract) convex geometries and
Free complexes

(2) Questions by Edelman & Reiner
for (abstract) convex geometries

(3) 2-dim generalized convex shellings

(4) Results
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() Convex geometries (Edelman & Jamison ’85)

E a nonempty finite set,
L ⊆ 2E a family of subsets of E.

. Def.Def. L is called a convex geometry on E

Def. if L satisfies the following conditions.

(1) ∅ ∈ L, E ∈ L.

(2) X, Y ∈ L ⇒ X ∩ Y ∈ L.

(3) X ∈ L \ {E}⇒ ∃ e ∈ E \X: X∪ {e} ∈ L.

X ⊆ E is called convex if X ∈ L.
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() Example 1: convex shelling

P a finite point set in IRd.

Define: L = {X ⊆ P : conv(X) ∩ P = X}.

4

123 134

1423

1234

234

12 13 34

∅
4 31 2

1

2 3

L is called the convex shelling on P.
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P a finite point set in IRd.

Define: L = {X ⊆ P : conv(X) ∩ P = X}.

∅

123 134
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1234
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12 13 34

431 2

1

2 3 4

L is called the convex shelling on P.
10



10
p

() Example 1: convex shelling

P a finite point set in IRd.

Define: L = {X ⊆ P : conv(X) ∩ P = X}.
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() Example 2: poset shelling

P = (E,≤) a partially ordered set.

Define: L = {X ⊆ E : e ∈ X, f ≤ e ⇒ f ∈ X}.

4

2 1

∅

1234

3

1

24

2

124123

12

L is called the poset shelling of P.
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() Other examples

Convex geometries arise from various objects.

�� From graphs

•• Tree shellings
•• Graph searches
•• Simplicial elimination of chordal graphs

�� From partially ordered sets

•• Poset double shellings
•• k-chains

�� From finite point sets in IRd

•• Lower convex shellings
�� From oriented matroids

•• Convex shellings of acyclic OMs
�� ...
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() Yet another example: cupstacks

What is “cupstacks”?

Construct the tower from the pile
and get it back as quickly as possible.
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() Yet another example: cupstacks

A sequence in collapsing
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() Free sets in a convex geometry

L a convex geometry on E.

. Def.Def. X ⊆ E is free in L if

�� X ∈ L (convexity).

�� the set of “extreme points” of X = X
. (independence).
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() Extreme points

L a convex geometry on E, X ∈ L a convex set.

. Def.Def. e ∈ X is an extreme point of X

Def. if X \ {e} ∈ L.

123

31

134

4

1423

2

∅

341312

234

1234

X = {2, 3, 4} ∈ L
2 extreme
3 not extreme
4 extreme

X is independent if every e ∈ X is extreme in X.
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() Extreme points

L a convex geometry on E, X ∈ L a convex set.

. Def.Def. e ∈ X is an extreme point of X

Def. if X \ {e} ∈ L.

123

31

134

4

1423

2

∅

341312

234

1234

X = {1, 3, 4} ∈ L
1 extreme
3 extreme
4 extreme

X is independent if every e ∈ X is extreme in X.
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() Free complex of a convex geometry

. Def.Def. The free complex Free(L) of L is

. Def.Def. the family of all free sets in L,

. RemarkRemark Free(L) is a simplicial complex.

123 134

1423

1234

234

3412 13

∅
431 2 3

4

1

2

L Free(L)
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() Convex geometries and point configurations

. RemarkRemark

P a point configuration in IRd,
L the convex shelling of P.

Then

Free(P) = Free(L).

To generalize Edelman & Reiner’s result,

We also need to generalize
“the boundary” and “the interior.”

=⇒ a concept of “dependency sets”
=⇒ (we omit the definition).
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() Correspondence

point config P conv geometry L on E

Free(P) Free(L)
e ∈ bd(conv(P)) DepL(e) 6= E
e ∈ int(conv(P)) DepL(e) = E

⇓
This leads to the following open problems.

18
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() Open problems by Edelman & Reiner

. Open ProblemsOpen Problems (Edelman & Reiner ’00)

E a finite set, L a convex geometry on E.

(1) Is delFree(L)(x) contractible
if DepL(x) 6= E?

(2) Is delFree(L)(x) homotopy equivalent to
a bouquet of equidimensional spheres
if DepL(x) = E?

a bouquet of

eight 1-dim

spheres

a bouquet of

six 0-dim

spheres

a bouquet of

zero sphere

19
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() Partial results in the literature

Both problems have been solved affirmatively
for the following classes of convex geometries.

�� Convex shellings of point configurations
. (Edelman & Reiner ’00, Dong ’02)

�� Poset double shellings (Edelman & Reiner ’00)

�� Simplicial eliminations of chordal graphs
. (Edelman & Reiner ’00)

�� Conv shellings of acyclic oriented matroids
. (Edelman, Reiner & Welker ’02)

�� Poset shellings. (Easy)

20
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() Our results

Consider another class of convex geometries,
2-dim separable generalized convex shellings.

(1) If DepL(x) 6= E,
delFree(L)(x) is contractible.

(2) If DepL(x) = E,
delFree(L)(x) is either contractible
or homotopy equiv to a 0-dim sphere.

21
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() What does it mean?

F Verifies Open Problems for this special case.
F Gives the first example of L and x s.t.

delFree(L)(x) is contractible & DepL(x) = E.

F Actually, it’s not just a special case...

22
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() Why separable generalized convex shellings?

. ThmThm (Kashiwabara, Nakamura & Okamoto, ’03)

For every convex geometry L,
there exist point sets P, Q with
conv(P) ∩ conv(Q) = ∅ s.t.

L ∼= the gen conv shelling on P w.r.t. Q.
(Separable generalized convex shellings
(represent all convex geometries.)

→→→ The 2-dim case is a first step
for resolution of Open Problems.
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() Generalized convex shelling

P,Q point sets in IRd with P ∩ conv(Q) = ∅.
Define:

L = {X ⊆ P : conv(X ∪ Q) ∩ P = X}.

q1

432

1

q2

234134

14

1

34

4

∅

1234

L is a convex geometry on P and called
the generalized conv shelling on P w.r.t. Q.
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() Technical terminology

P,Q point sets in IRd with P ∩ conv(Q) = ∅,
L the generalized convex shelling on P w.r.t. Q.

�� L is 2-dimensional if d = 2.
�� L is separable if conv(P) ∩ conv(Q) = ∅.

a non-separable case

25
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() Outline of the proof

L the 2-dim sep gen conv shelling on P w.r.t. Q,
Q 6= ∅.
(1) Free(L) is the clique complex of a graph G.

I.e., the family of all cliques of G.

(2) G is chordal & connected.

Chordal ⇔ every ind. cycle is C3.

(3) (2) ⇒ Free(L) contractible.

(4) G− x has at most 2 connected components.

(5) x a cut-vertex of G ⇒ DepL(x) = P.
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() Our results (again)

L the 2-dim sep gen conv shelling on P w.r.t. Q,
x ∈ P.

(1) If DepL(x) 6= P,
delFree(L)(x) is contractible.

(2) If DepL(x) = P,
delFree(L)(x) is either contractible
or homotopy equiv to a 0-dim sphere.

27



28
p

() Problems are still open

�� We don’t know yet
the problems are affirmative or
negative in the general case!

�� How about a 3-dim case??
�� How about a non-separable 2-dim case??

[End of Talk]
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Here are extra slides for possible questions
from the audience.
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() Closure operators, extreme point operators

L a convex geometry on E.

. Def.Def. The closure operator

Def. τL : 2E → 2E is defined as

τL(A) =
⋂

{X ∈ L : A ⊆ X}.

. Def.Def. The extreme point operator

Def. exL : 2E → 2E is defined as

exL(A) = {e ∈ A : e 6∈ τL(A \ {e})}.
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() Dependency sets

L a convex geometry on E.

. Def.Def. A ⊆ E is independent if exL(A) = A.

. Def.Def. The dependency set of e ∈ E in L is

DepL(e) =



f ∈ E :

∃ independent A s.t.
f ∈ A, e ∈ τL(A),
e 6∈ τL(A \ {f})



 .
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