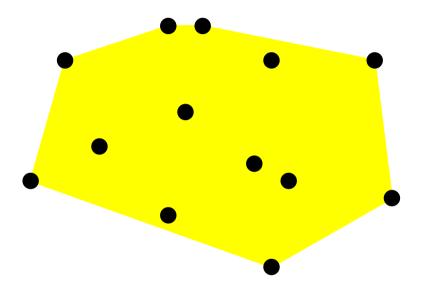
Local topology of the free complex of a two-dimensional generalized convex shelling

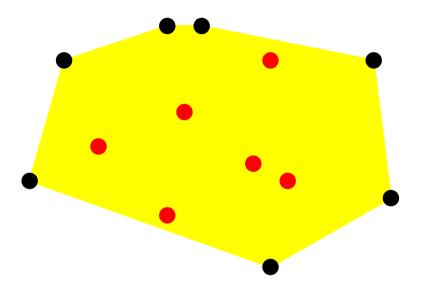
Yoshio Okamoto October 23, 2003 Mittagsseminar

Supported by the Berlin-Zürich Joint Graduate Program

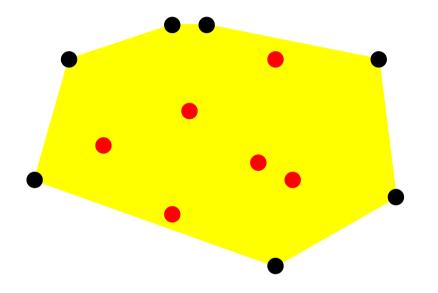
How many interior points are there in a finite point configuration \mathcal{P} ?



How many interior points are there in a finite point configuration \mathcal{P} ?



How many interior points are there in a finite point configuration \mathcal{P} ?



An Euler-type formula:

of int. pts in $\mathcal{P} = (-1)^{d-1} \sum_{\text{free } A \subseteq \mathcal{P}} (-1)^{|A|} |A|.$

 $\sqrt{\frac{2}{\sqrt{}}}$

of int. pts in $\mathcal{P} = (-1)^{d-1} \sum_{\text{free } A \subseteq \mathcal{P}} (-1)^{|A|} |A|.$

Proved by:

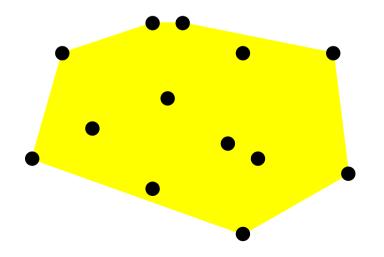
Ahrens, Gordon & McMahon (DCG '99) for d = 2, geometric proof Conj.: This formula holds for general d. $\sqrt{\frac{2}{\sqrt{}}}$

of int. pts in $\mathcal{P} = (-1)^{d-1} \sum_{\text{free } A \subseteq \mathcal{P}} (-1)^{|A|} |A|.$

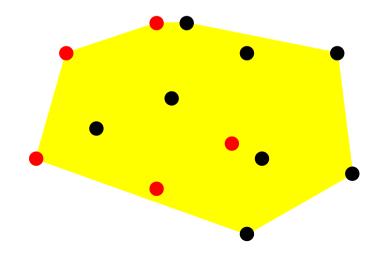
Proved by:

- Ahrens, Gordon & McMahon (DCG '99) for d = 2, geometric proof
 Klain (Adv Math '99) for general d, using a valuation
 Edelman & Reiner (DCG '00) for general d, topological proof
 - $\rightarrow \rightarrow \rightarrow$ making use of **free complexes**

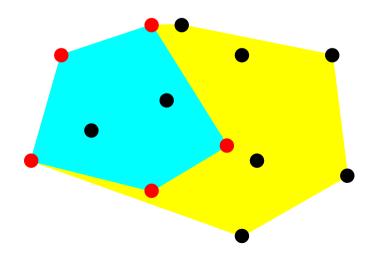
Def. X ⊆ P is free if
conv(X) ∩ P = X (convexity)
the extreme points of conv(X) = X (the points of X lie in convex position) (independence).



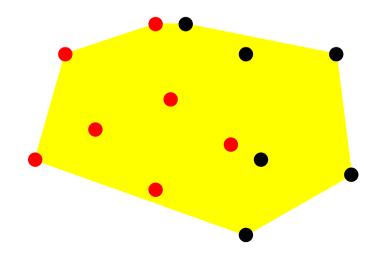
Def. X ⊆ P is free if
conv(X) ∩ P = X (convexity)
the extreme points of conv(X) = X (the points of X lie in convex position) (independence).



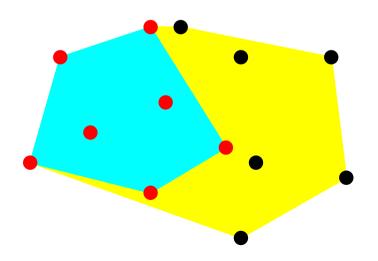
Def. X ⊆ P is free if
 conv(X) ∩ P = X (convexity)
 the extreme points of conv(X) = X (the points of X lie in convex position) (independence).



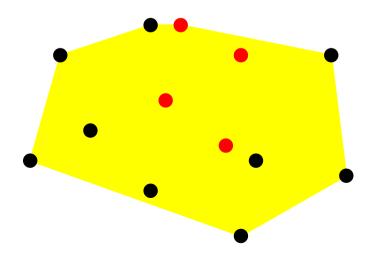
Def. X ⊆ P is free if
conv(X) ∩ P = X (convexity)
the extreme points of conv(X) = X (the points of X lie in convex position) (independence).



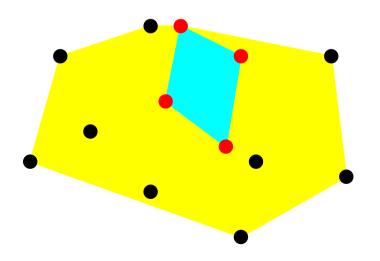
Def. X ⊆ P is free if
 conv(X) ∩ P = X (convexity)
 the extreme points of conv(X) = X (the points of X lie in convex position) (independence).

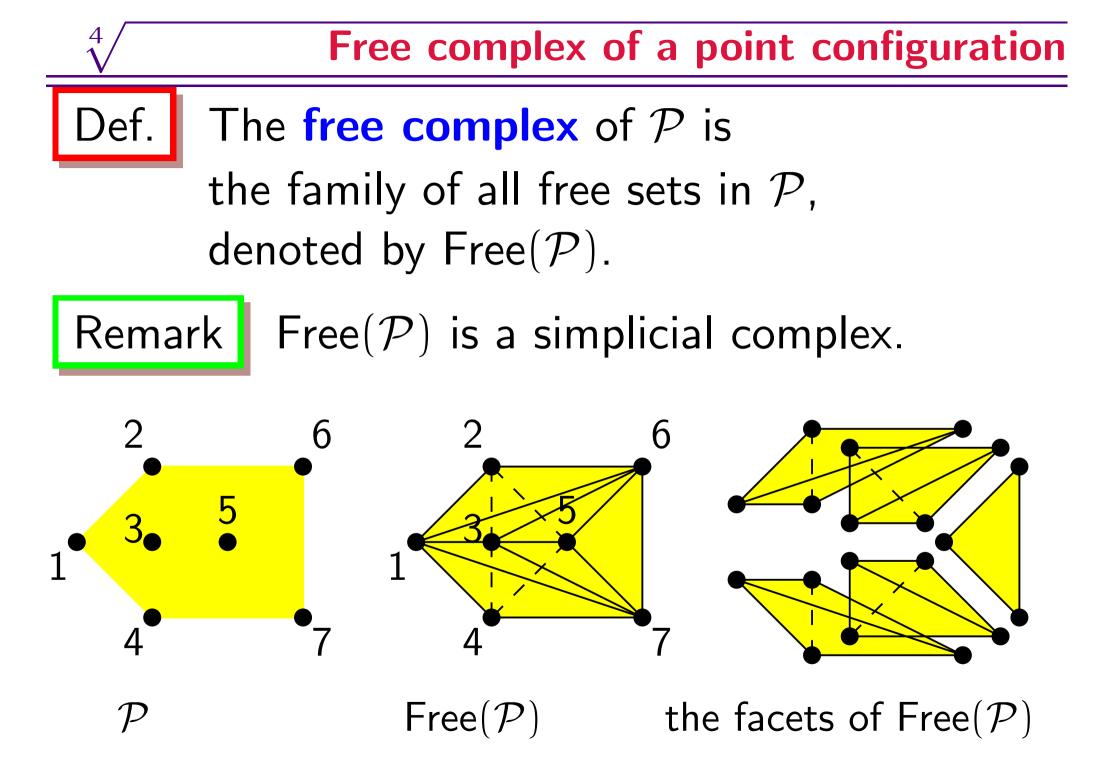


Def. X ⊆ P is free if
conv(X) ∩ P = X (convexity)
the extreme points of conv(X) = X (the points of X lie in convex position) (independence).



Def. X ⊆ P is free if
conv(X) ∩ P = X (convexity)
the extreme points of conv(X) = X (the points of X lie in convex position) (independence).





 $\sqrt{5}$

Proof by Edelman & Reiner

 ${\cal P}$ a finite point configuration in ${\rm I\!R}^d$

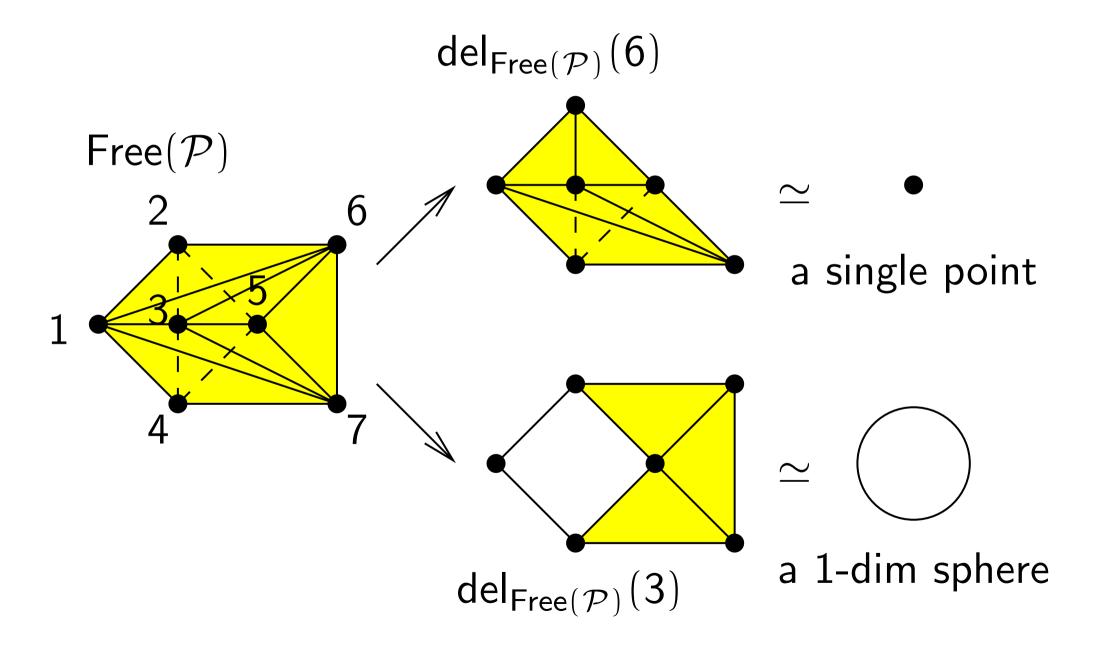
Consider the free complex $Free(\mathcal{P})$ of \mathcal{P} .

 $\sqrt[5]{}$

 ${\mathcal P}$ a finite point configuration in ${\rm I\!R}^{\,d}$

- Consider the free complex $\mathsf{Free}(\mathcal{P})$ of $\mathcal{P}.$
- In Edelman & Reiner's proof, it was a key that
 - $\begin{aligned} & \blacklozenge \ del_{\mathsf{Free}(\mathcal{P})}(x) \text{ is contractible} \\ & \mathsf{if} \ x \in \mathcal{P} \text{ lies on the bd of } \mathsf{conv}(\mathcal{P}) \\ & \mathsf{(implying } \tilde{\chi}(\mathsf{del}_{\mathsf{Free}(\mathcal{P})}(x)) = \mathsf{0}), \end{aligned}$
 - $\begin{aligned} & \blacklozenge \ del_{\mathsf{Free}(\mathcal{P})}(x) \ \text{has the integral homology} \\ & \mathsf{of} \ a \ (d-1) \text{-dim sphere} \\ & \mathsf{if} \ x \in \mathcal{P} \ \mathsf{lies} \ \mathsf{in the interior} \ \mathsf{of} \ \mathsf{conv}(\mathcal{P}) \\ & (\mathsf{implying} \ \widetilde{\chi}(\mathsf{del}_{\mathsf{Free}(\mathcal{P})}(x)) = (-1)^{d-1}). \end{aligned}$

Proof by Edelman & Reiner: Example

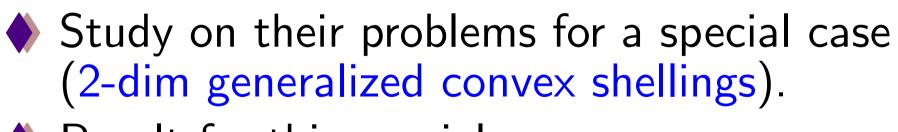


6

Question by Edelman & Reiner

How about a generalization to abstract convex geometries??

This work



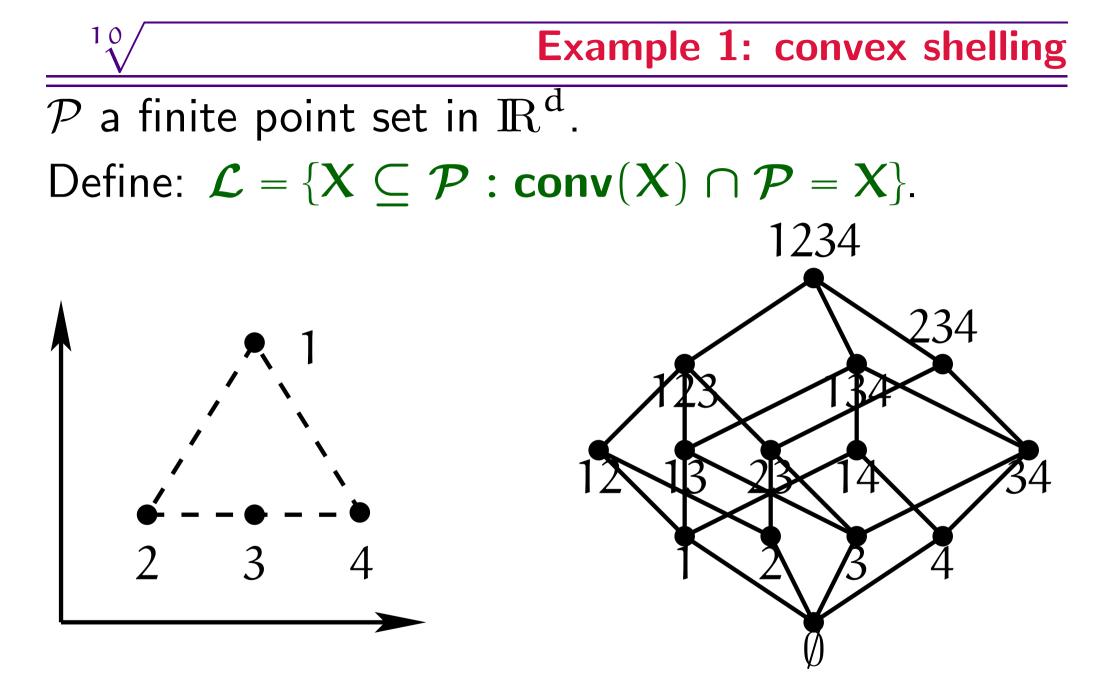
Result for this special case.

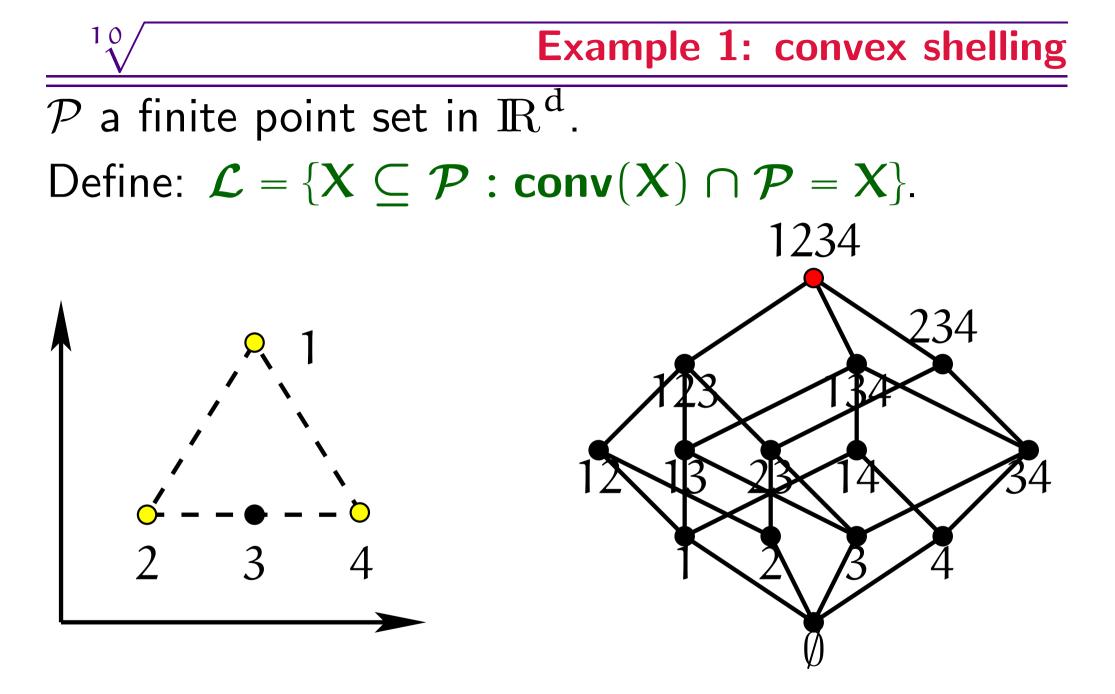
8

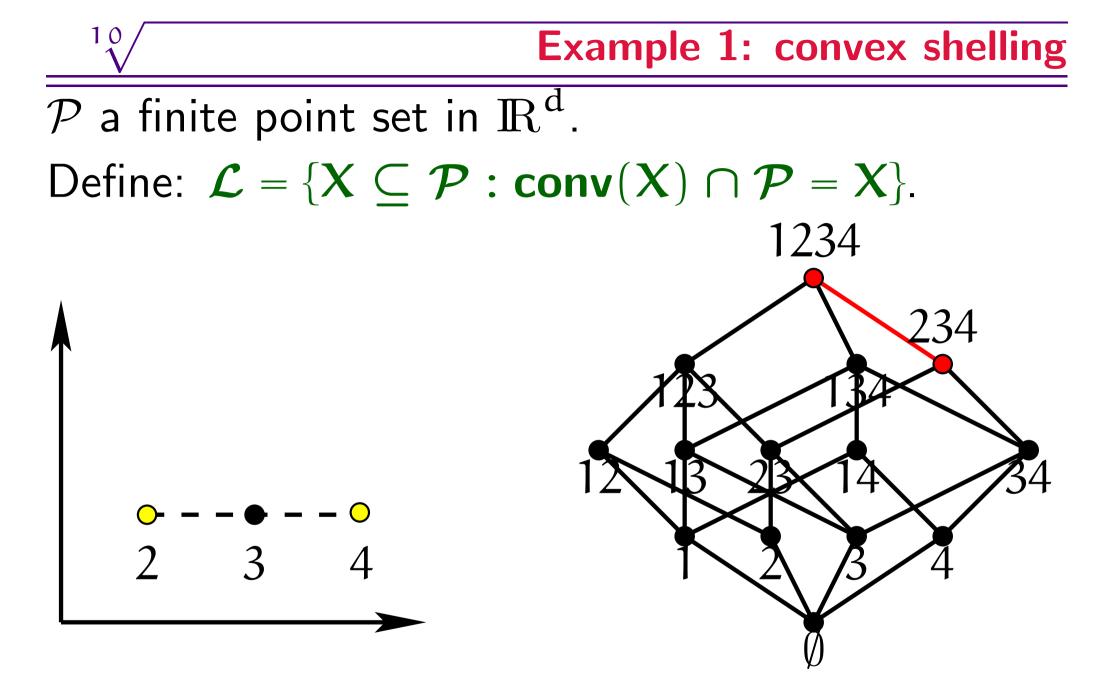
- (1) (Abstract) convex geometries and Free complexes
- (2) Questions by Edelman & Reiner for (abstract) convex geometries
- (3) 2-dim generalized convex shellings(4) Results

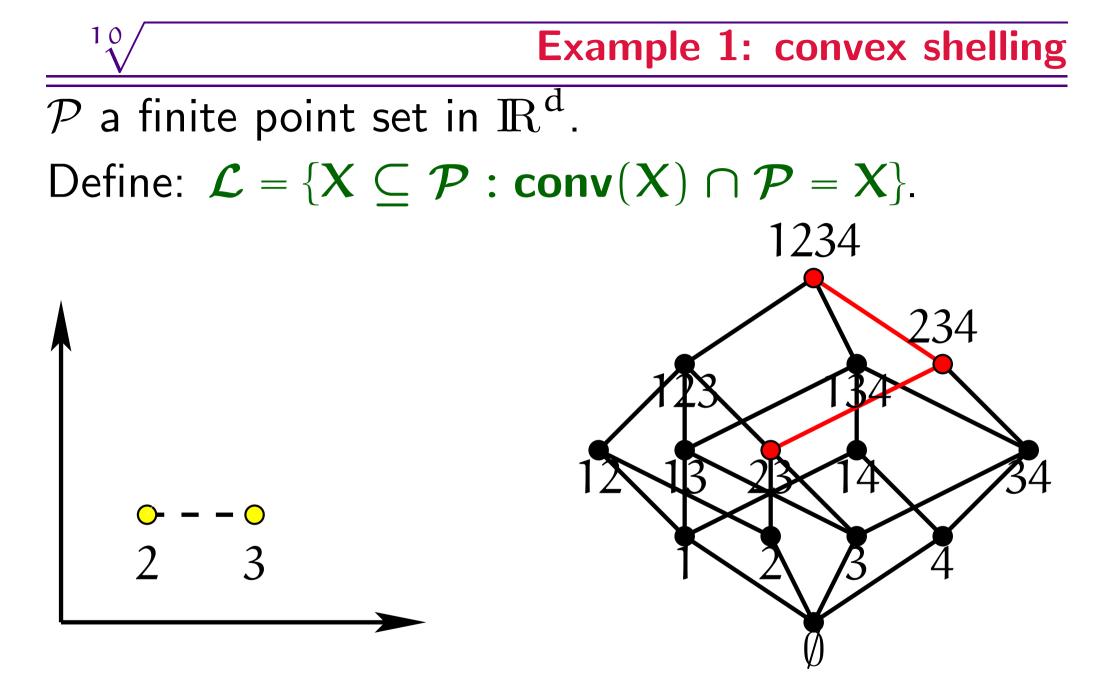
Convex geometries (Edelman & Jamison '85)

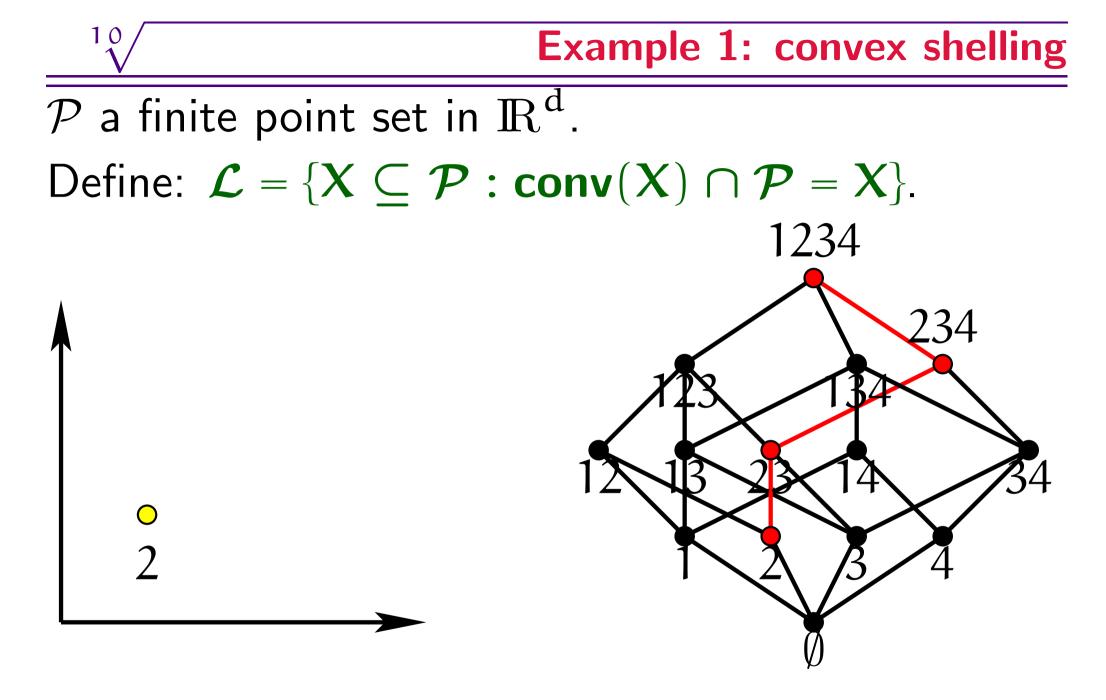
- E a nonempty finite set,
- $\mathcal{L} \subseteq 2^{\mathsf{E}}$ a family of subsets of E .
 - Def. \mathcal{L} is called a **convex geometry** on E if \mathcal{L} satisfies the following conditions.
- (1) $\emptyset \in \mathcal{L}, E \in \mathcal{L}$. (2) $X, Y \in \mathcal{L} \Rightarrow X \cap Y \in \mathcal{L}$. (3) $X \in \mathcal{L} \setminus \{E\} \Rightarrow \exists e \in E \setminus X: X \cup \{e\} \in \mathcal{L}$. $X \subset E$ is called **convex** if $X \in \mathcal{L}$.

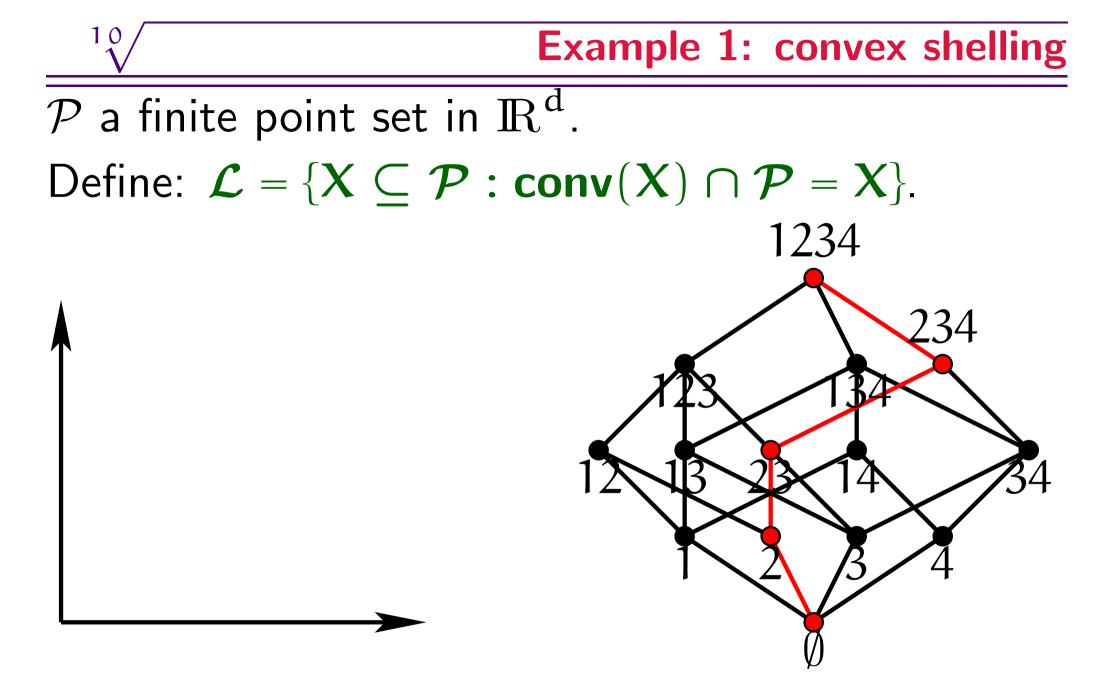


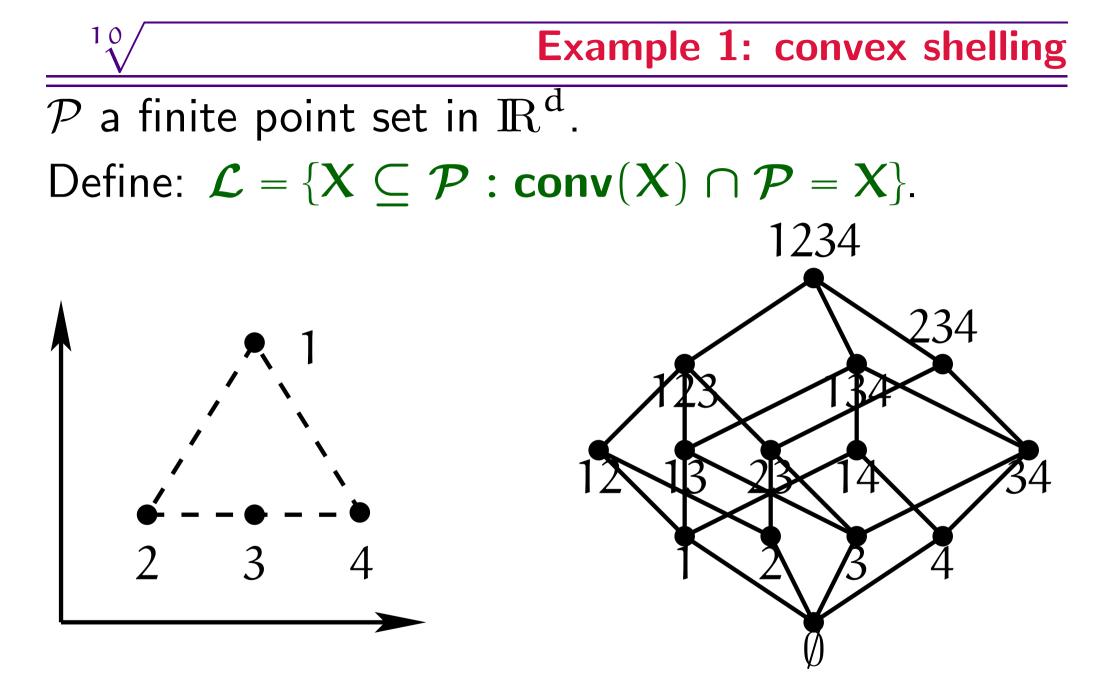






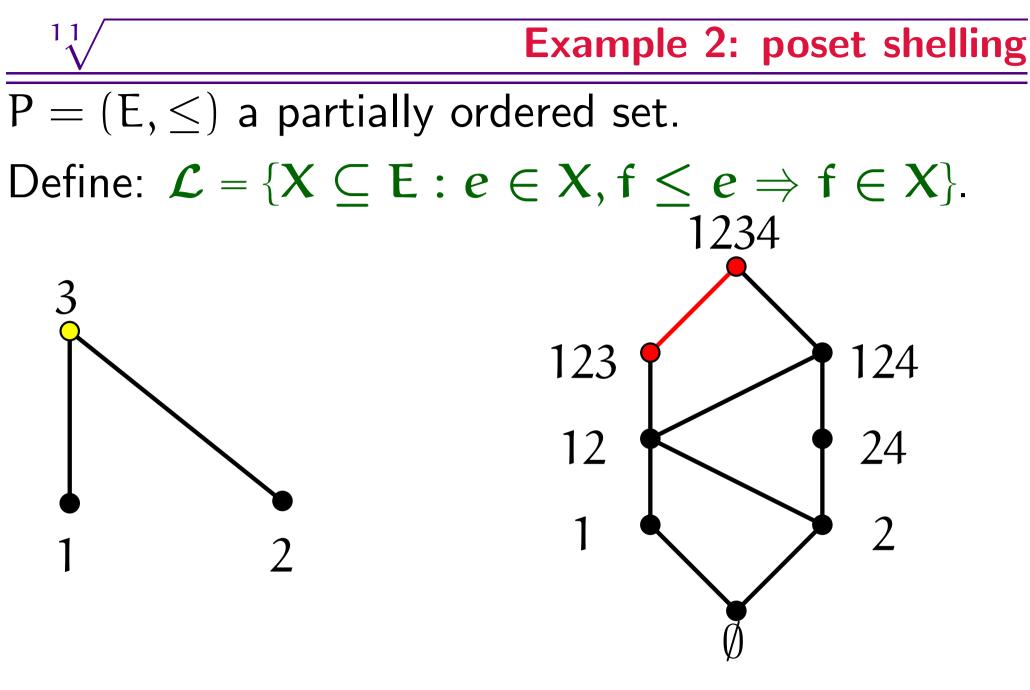


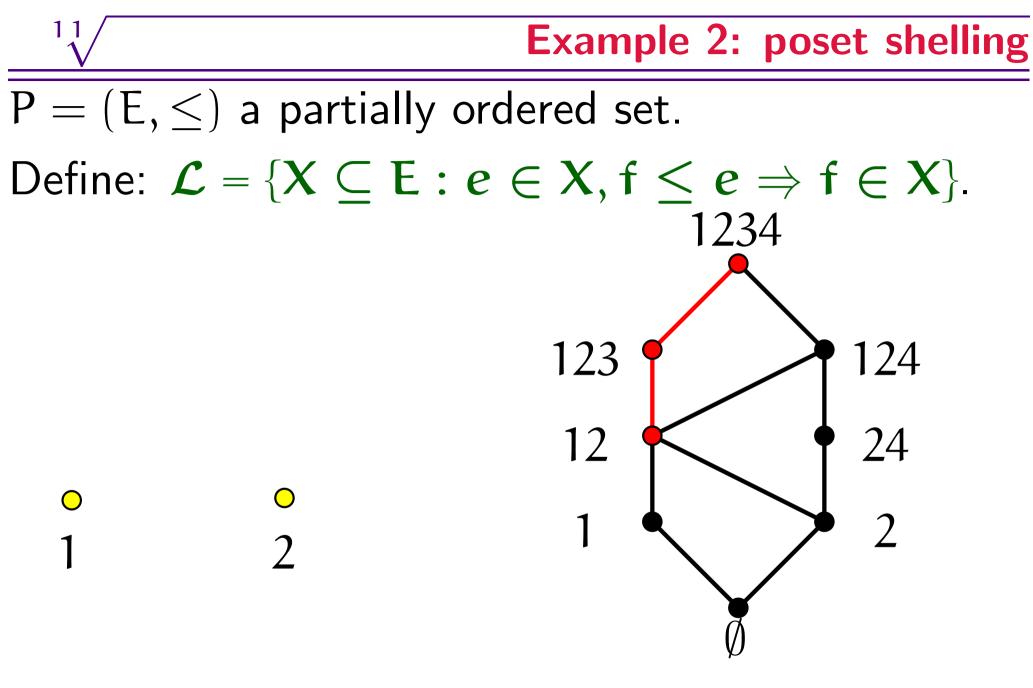


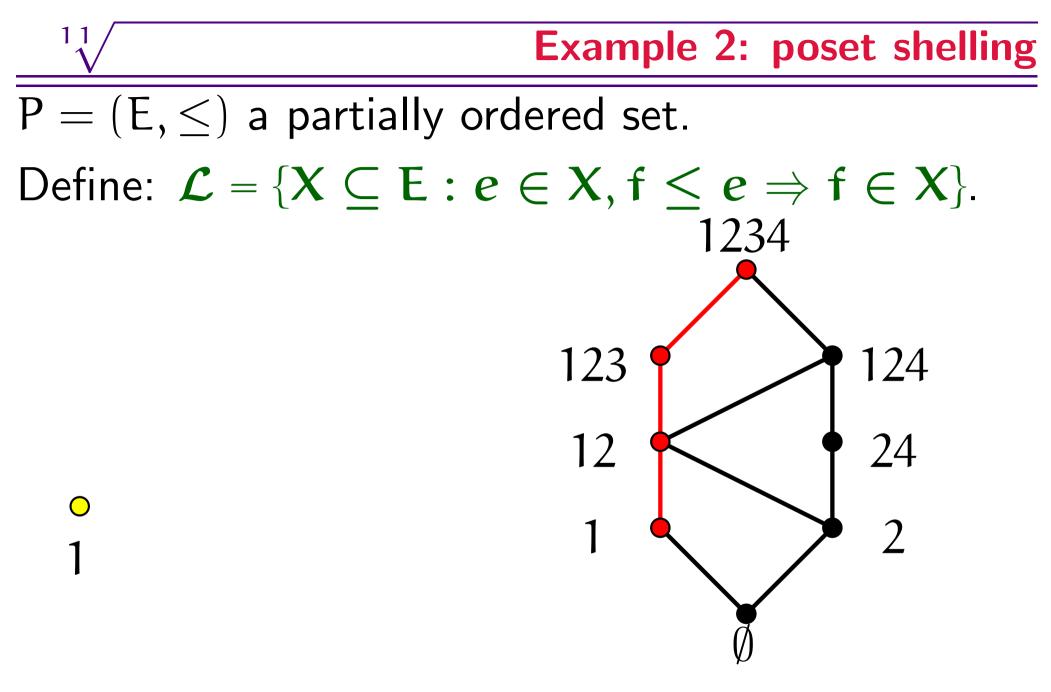


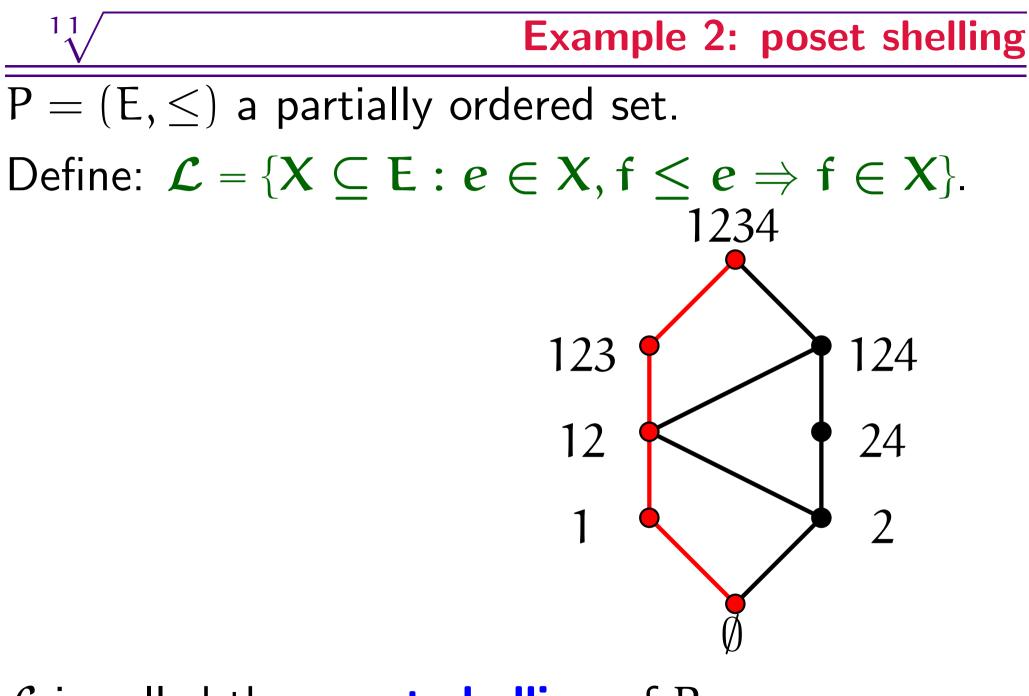
Example 2: poset shelling $P = (E, \leq)$ a partially ordered set. Define: $\mathcal{L} = \{X \subseteq E : e \in X, f \leq e \Rightarrow f \in X\}.$ 1234 123 124 24 12 2

Example 2: poset shelling $P = (E, \leq)$ a partially ordered set. Define: $\mathcal{L} = \{X \subseteq E : e \in X, f \leq e \Rightarrow f \in X\}.$ 1234 123 124 24 12 2









Example 2: poset shelling $P = (E, \leq)$ a partially ordered set. Define: $\mathcal{L} = \{X \subseteq E : e \in X, f \leq e \Rightarrow f \in X\}.$ 1234 123 124 24 12 2

Convex geometries arise from various objects.

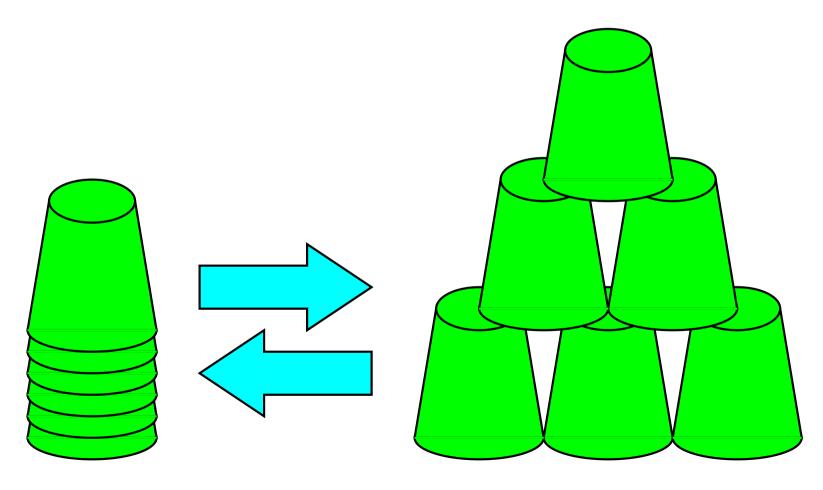
- Tree shellings
- Graph searches
- Simplicial elimination of chordal graphs
- From partially ordered sets
 - Poset double shellings
 - k-chains
- \blacklozenge From finite point sets in ${\rm I\!R}^{
 m d}$
 - Lower convex shellings
- From oriented matroids
 - Convex shellings of acyclic OMs

13

Yet another example: cupstacks

What is "cupstacks"?

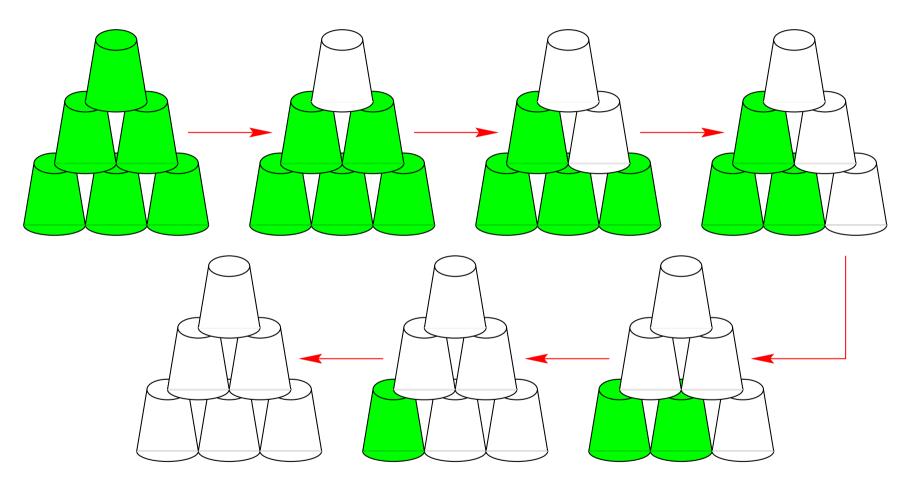
Construct the tower from the pile and get it back as quickly as possible.



13

Yet another example: cupstacks

A sequence in collapsing



 $\frac{14}{\sqrt{}}$

Free sets in a convex geometry

 \mathcal{L} a convex geometry on E.

Def. $X \subseteq E$ is free in \mathcal{L} if

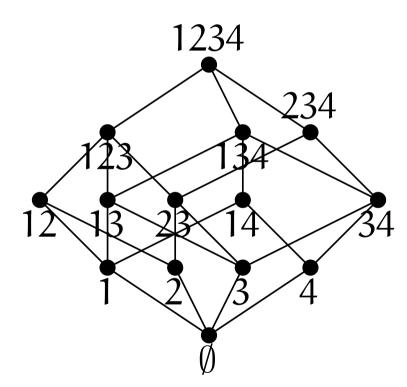
♦ X ∈ L (convexity)
♦ the set of "extreme points" of X = X (independence).

15

Extreme points

 \mathcal{L} a convex geometry on E, $X \in \mathcal{L}$ a convex set.

Def. $e \in X$ is an **extreme point** of X if $X \setminus \{e\} \in \mathcal{L}$.



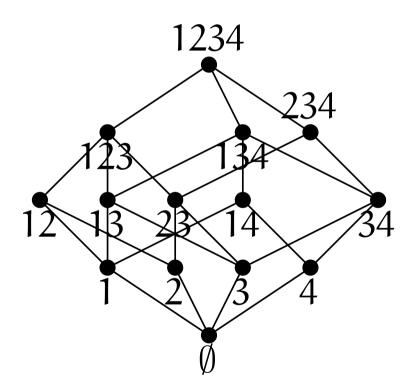
- $X=\{2,3,4\}\in\mathcal{L}$
 - 2 extreme
 - 3 not extreme
 - 4 extreme

X is **independent** if every $e \in X$ is extreme in X.

Extreme points

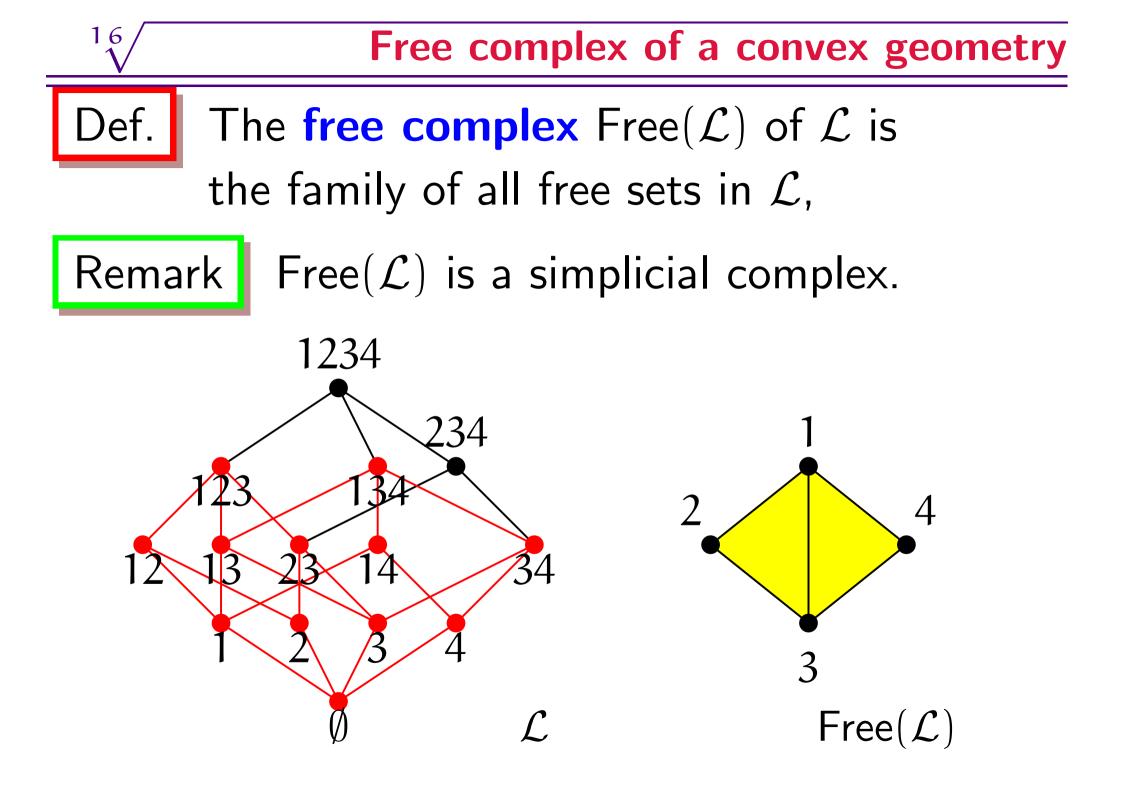
 \mathcal{L} a convex geometry on E, $X \in \mathcal{L}$ a convex set.

Def. $e \in X$ is an **extreme point** of X if $X \setminus \{e\} \in \mathcal{L}$.



- $X=\{1,3,4\}\in\mathcal{L}$
 - 1 extreme
 - 3 extreme
 - 1 extreme

X is **independent** if every $e \in X$ is extreme in X.



¹⁷/ Convex geometries and point configurations Remark

 \mathcal{P} a point configuration in \mathbb{R}^d , \mathcal{L} the convex shelling of \mathcal{P} .

Then

 $\operatorname{Free}(\mathcal{P}) = \operatorname{Free}(\mathcal{L}).$

Convex geometries and point configurations

Remark

 \mathcal{P} a point configuration in \mathbb{R}^d , \mathcal{L} the convex shelling of \mathcal{P} .

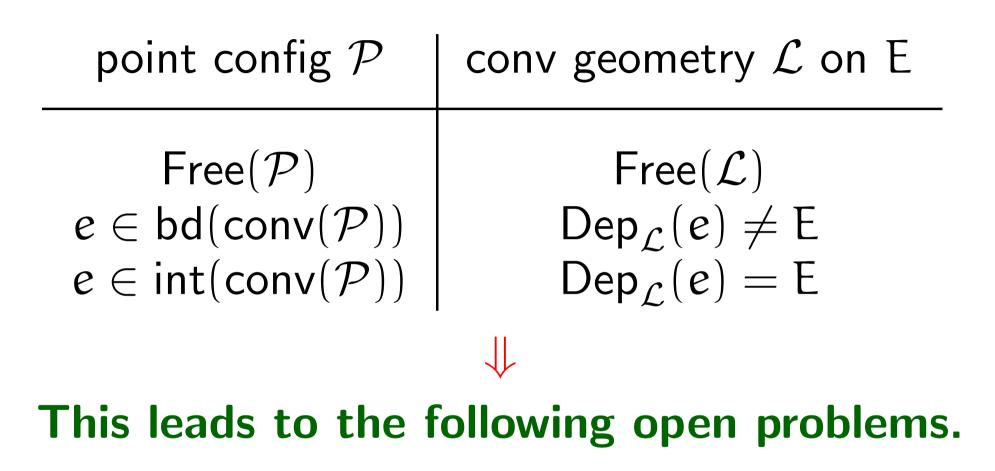
Then

 $\operatorname{Free}(\mathcal{P}) = \operatorname{Free}(\mathcal{L}).$

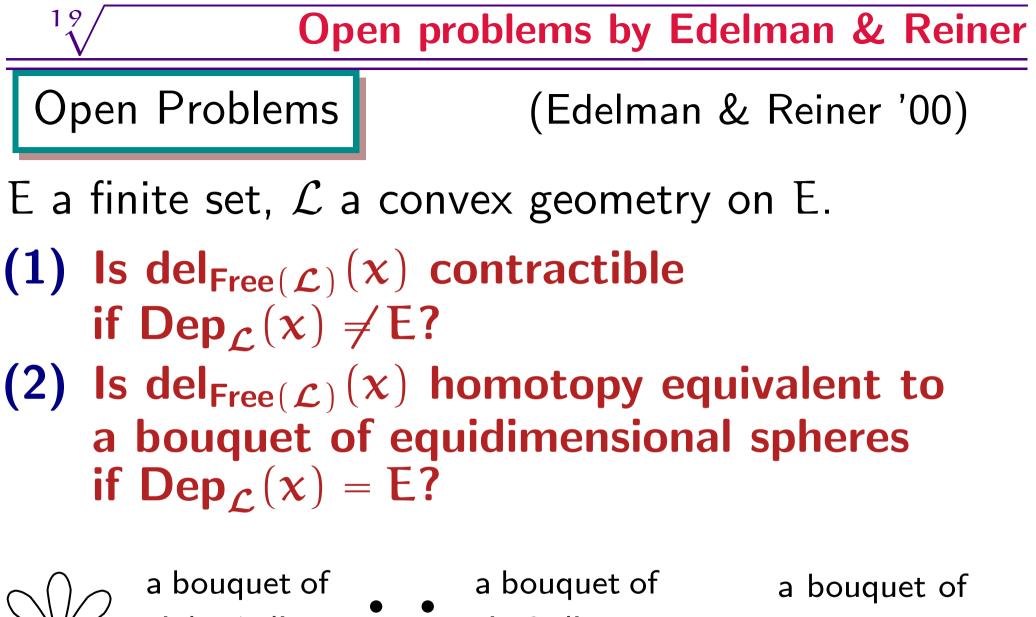
To generalize Edelman & Reiner's result,

We also need to generalize "the boundary" and "the interior."

⇒ a concept of "dependency sets" (we omit the definition).



18



- eight 1-dim spheres
- a bouquet of six 0-dim spheres

zero sphere

 $\frac{20}{\sqrt{}}$

Both problems have been solved affirmatively for the following classes of convex geometries.

- Convex shellings of point configurations (Edelman & Reiner '00, Dong '02)
- Poset double shellings (Edelman & Reiner '00)
- Simplicial eliminations of chordal graphs (Edelman & Reiner '00)
- Conv shellings of acyclic oriented matroids (Edelman, Reiner & Welker '02)
- Poset shellings. (Easy)

 $\frac{21}{\sqrt{}}$

Consider another class of convex geometries, 2-dim separable generalized convex shellings.

- (1) If $Dep_{\mathcal{L}}(x) \neq E$, $del_{Free}(\mathcal{L})(x)$ is contractible.
- (2) If $Dep_{\mathcal{L}}(x) = E$, $del_{Free(\mathcal{L})}(x)$ is either contractible or homotopy equiv to a 0-dim sphere.

- ★ Verifies Open Problems for this special case.
 ★ Gives the first example of L and x s.t. del_{Free(L)}(x) is contractible & Dep_L(x) = E.
- ★ Actually, it's not just a special case...

Why separable generalized convex shellings?

Thm

(Kashiwabara, Nakamura & Okamoto, '03)

For every convex geometry \mathcal{L} , there exist point sets \mathcal{P} , \mathcal{Q} with $\operatorname{conv}(\mathcal{P}) \cap \operatorname{conv}(\mathcal{Q}) = \emptyset$ s.t.

$\mathcal{L} \cong$ the gen conv shelling on \mathcal{P} w.r.t. \mathcal{Q} .

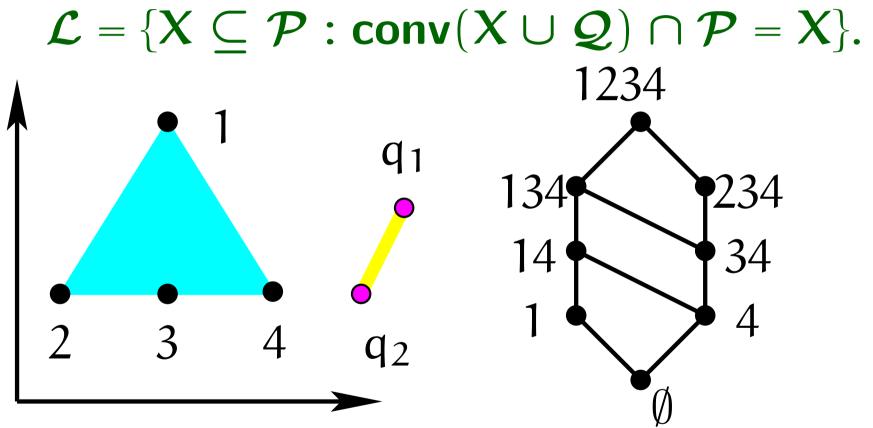
(Separable generalized convex shellings represent all convex geometries.)

 $\rightarrow \rightarrow \rightarrow$ The 2-dim case is a first step for resolution of Open Problems.

 $\frac{24}{\sqrt{}}$

Generalized convex shelling

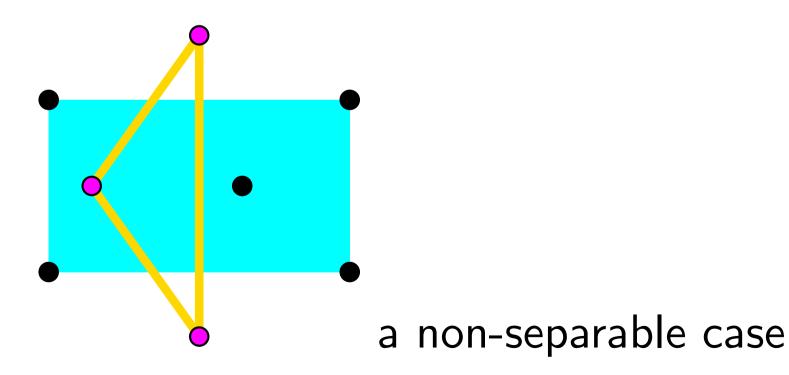
 \mathcal{P}, \mathcal{Q} point sets in \mathbb{IR}^d with $\mathcal{P} \cap \operatorname{conv}(\mathcal{Q}) = \emptyset$. Define:



 \mathcal{L} is a convex geometry on \mathcal{P} and called **the generalized conv shelling on \mathcal{P} w.r.t. \mathcal{Q}**.

 $\frac{25}{\sqrt{}}$

- $\mathcal{P}, \mathcal{Q} \text{ point sets in } \mathbb{R}^d \text{ with } \mathcal{P} \cap \text{conv}(\mathcal{Q}) = \emptyset,$
- ${\cal L}$ the generalized convex shelling on ${\cal P}$ w.r.t. ${\cal Q}.$
 - $\blacklozenge \mathcal{L} \text{ is } \mathbf{2}\text{-dimensional if } d = 2.$
 - $\blacklozenge \mathcal{L} \text{ is separable if } \operatorname{conv}(\mathcal{P}) \cap \operatorname{conv}(\mathcal{Q}) = \emptyset.$



 $\frac{26}{\sqrt{}}$

- \mathcal{L} the 2-dim sep gen conv shelling on \mathcal{P} w.r.t. \mathcal{Q} , $\mathcal{Q} \neq \emptyset$.
- (1) Free(*L*) is the clique complex of a graph G.
 I.e., the family of all cliques of G.
- (2) G is chordal & connected.
 - Chordal \Leftrightarrow every ind. cycle is C₃.
- (3) (2) \Rightarrow Free(\mathcal{L}) contractible.
- (4) G x has at most 2 connected components.
- (5) x a cut-vertex of $G \Rightarrow Dep_{\mathcal{L}}(x) = \mathcal{P}$.

 $\frac{27}{\sqrt{}}$

Our results (again)

 \mathcal{L} the 2-dim sep gen conv shelling on \mathcal{P} w.r.t. \mathcal{Q} , $x \in \mathcal{P}$.

- (1) If $Dep_{\mathcal{L}}(x) \neq \mathcal{P}$, $del_{Free}(\mathcal{L})(x)$ is contractible.
- (2) If $Dep_{\mathcal{L}}(x) = \mathcal{P}$, $del_{Free(\mathcal{L})}(x)$ is either contractible or homotopy equiv to a 0-dim sphere.

 We don't know yet the problems are affirmative or negative in the general case!
 How about a 3-dim case??
 How about a non-separable 2-dim case??

28

[End of Talk]

Here are extra slides for possible questions from the audience.

Closure operators, extreme point operators

 \mathcal{L} a convex geometry on E.

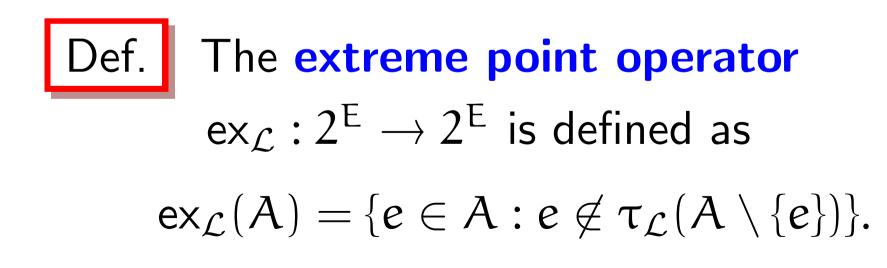
30

Def.

The closure operator

 $\tau_{\mathcal{L}}: 2^E \rightarrow 2^E$ is defined as

$$\tau_{\mathcal{L}}(A) = \bigcap \{ X \in \mathcal{L} : A \subseteq X \}.$$



 $31 \ 1/$

Def.

Dependency sets

\mathcal{L} a convex geometry on E.

Def.
$$A \subseteq E$$
 is **independent** if $ex_{\mathcal{L}}(A) = A$.

The **dependency set** of $e \in E$ in \mathcal{L} is

$$\mathsf{Dep}_{\mathcal{L}}(e) = \left\{ \begin{array}{ll} \exists \text{ independent } A \text{ s.t.} \\ \mathsf{f} \in \mathsf{E} : & \mathsf{f} \in \mathsf{A}, e \in \tau_{\mathcal{L}}(\mathsf{A}), \\ & e \not\in \tau_{\mathcal{L}}(\mathsf{A} \setminus \{\mathsf{f}\}) \end{array} \right\}.$$