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What is all about?

. Framework:Framework: Several people are willing to work together...

�� They want to have a largest possible benefit.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . optimization problem

�� They want to allocate the benefit in a fair way.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . game-theoretic problem

. Game Theory?Game Theory?

�� Noncooperative Game Theory
�� Cooperative Game Theory
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Cooperative games

. Def.Def. A cooperative game (or a game) is a pair (N,γ) of

�� a finite set N (set of players)

�� a function γ : 2N → IR with γ(∅) = 0
(characteristic function).

. Interpretation:Interpretation: For S ⊆ N,

γ(S) represents

{
the max. benefit gained by S
the min. cost owed by S

}

when the players in S work in cooperation.

. Goal:Goal: To allocate γ(N) to each player in a “fair” way.
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Objective of our work

The paper

Y. Okamoto: Fair cost allocations under conflicts.
To appear in ISAAC 2003.

studies minimum coloring games, and
investigates the following kinds of fairness concepts:

�� Core (Gillies ’53)

�� Nucleolus (Schmeidler ’69)

�� τ-value (Tijs ’81)

�� Shapley value (Shapley ’53).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Past works on minimum coloring games:

�� Deng, Ibaraki & Nagamochi ’99
�� Deng, Ibaraki, Nagamochi & Zang ’00
�� Okamoto ’03
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Scope of today’s talk

Focus on cores and nucleoli of minimum coloring games

�� Def.: minimum coloring game
�� Def.: core
�� Properties:

Balancedness, Total balancedness, Submodularity
�� Characterization: the core for a perfect graph
�� Def.: nucleolus
�� Characterization: the nucleolus for a chordal graph
�� Open problems
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Definition: minimum coloring game

G = (V, E) an undirected graph

�� A proper k-coloring of G

is a surjective map c : V → {1, . . . , k} s.t.
if {u, v} ∈ E, then c(u) 6= c(v).

�� The chromatic number χ(G) of G

= min{ k : a proper k-coloring of G exists }.

�� The minimum coloring game on G

is a cooperative game (V, χG).

χG : 2V → IN is defined as χG(S) = χ(G[S]),
where G[S] is the subgraph induced by S ⊆ V .
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Example: minimum coloring game

χG(S) = χ(G[S]) for S ⊆ V .

1

2

4

5

3

S χG S χG S χG S χG

∅ 0 14 1 123 2 245 2
1 1 15 2 124 2 345 2
2 1 23 2 125 3 1234 2
3 1 24 1 134 2 1235 3
4 1 25 2 135 2 1245 3
5 1 34 2 145 2 1345 2

12 2 35 1 234 2 2345 2
13 1 45 2 235 2 12345 3

. Goal:Goal: To allocate χ(G) to each vertex in a fair way.
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Cost allocation in a min coloring game

. Def.:Def.: A cost allocation for a game (N,γ) is

a vector z ∈ IRN such that
∑

{z[ i ] : i ∈ N} = γ(N).

(Often in cooperative game theory, this is called a pre-imputation.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Q.Q. What kinds of cost allocations are considered fair??

...... Core, Nucleolus, τ-value, Shapley value, etc.
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Core

. Def.:Def.: A cost allocation z ∈ IRN for (N,γ) is

a core allocation if
∑

{z[ i ] : i ∈ S} ≤ γ(S) for all S ⊆ N
(each subset S ⊆ N is satisfied with z).

The core of (N,γ) is the set of all core allocations.

. RemarkRemark The core is a bounded polyhedron,

possibly empty.
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Example: Core

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

V = {1, 2, 3}

χG(∅) 0
χG({1}) 1
χG({2}) 1
χG({3}) 1
χG({1, 2}) 1
χG({1, 3}) 2
χG({2, 3}) 2
χG({1, 2, 3}) 2

Core =



z ∈ IR3 :

z[ 1 ] ≤ 1, z[ 2 ] ≤ 1, z[ 3 ] ≤ 1,
z[ 1 ] + z[ 2 ] ≤ 1, z[ 1 ] + z[ 3 ] ≤ 2,
z[ 2 ] + z[ 3 ] ≤ 2, z[ 1 ] + z[ 2 ] + z[ 3 ] = 2




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Example: Core

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

V = {1, 2, 3}

χG(∅) 0
χG({1}) 1
χG({2}) 1
χG({3}) 1
χG({1, 2}) 1
χG({1, 3}) 2
χG({2, 3}) 2
χG({1, 2, 3}) 2

Core = conv

{(
1

0

1

)
,

(
0

1

1

)}
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Problems

We want to know:

(1) When is the core empty??

(2) If the core is nonempty,

(a) What are the extreme points of the core??
(what is the V-representation of the core??)

(b) How can we compute a core allocation??

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Def.Def. A game (N,γ) is balanced if the core is nonempty.
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Example: an empty core

The min col. game on a cycle with 5 vert. has an empty core.

1

2

3 4

5

Suppose ∃ z ∈ core.
Then

∑
z[ i ] = χG(V) = 3,

and

z[ 1 ] + z[ 3 ] ≤ χG({1, 3}) = 1,

z[ 2 ] + z[ 4 ] ≤ χG({2, 4}) = 1,

z[ 3 ] + z[ 5 ] ≤ χG({3, 5}) = 1,

z[ 4 ] + z[ 1 ] ≤ χG({4, 1}) = 1,

z[ 5 ] + z[ 2 ] ≤ χG({5, 2}) = 1.

A contradiction.

11



12
p

Balancedness of min coloring games

The min coloring problem can be formulated as
the min set cover problem.

. Thm.Thm. (Deng, Ibaraki & Nagamochi ’99)

A min coloring game (V, χG) is balanced

m
The LP-relaxation of the above formulation of
the min coloring problem has an integral opt. sol’n.

. Thm.Thm. (Deng, Ibaraki & Nagamochi ’99)

It is NP-complete to decide the min coloring game
of a given graph is balanced or not.
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Correspondence

graphs

balancedzero integrality gap

min. coloring games
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Totally balanced games

. Def.:Def.: A game (N,γ) is totally balanced

if each of the subgames of (N,γ) is balanced.

. Def.:Def.: Let T ⊆ N. A subgame of (N,γ) w.r.t. T

is a game (T, γ|T ) where γ|T (S) = γ(S) (S ⊆ T).

A min coloring game (V, χG) is totally balanced

m
G is perfect.

Def.: G is perfect if for every induced subgraph H ⊆ G
χ(H) = the size of a maximum clique in H.

(A clique is a vertex subset which induces a complete graph.)
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Totally balanced games

. Def.:Def.: A game (N,γ) is totally balanced

if each of the subgames of (N,γ) is balanced.

. Def.:Def.: Let T ⊆ N. A subgame of (N,γ) w.r.t. T

is a game (T, γ|T ) where γ|T (S) = γ(S) (S ⊆ T).

. Thm.Thm. (Deng, Ibaraki, Nagamochi & Zang ’00)

A min coloring game (V, χG) is totally balanced

m
G is perfect.

. Def.:Def.: G is perfect if for every induced subgraph H ⊆ G
χ(H) = max size of the cliques in H.

(A clique is a vertex subset which induces a complete graph.)
14
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Correspondence

graphs

balancedzero integrality gap

min. coloring games

perfect totally balanced
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Characterization of cores for perfect graphs

. Thm.Thm.

G a perfect graph

core = conv(the char. vectors of the maximum cliques of G).

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

Core = conv

{(
1

0

1

)
,

(
0

1

1

)}
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Corollaries

. Cor.Cor. We can do the following in poly. time.

(1) Find a core allocation for a perfect graph.

(≈ Find a maximum clique in poly. time.)

(2) Decide whether a given vector belongs to the core or not
for a pefect graph.

(≈ The membership problem for the clique polytope.)

They are the consequences of the previous theorem and
a result by Grötschel, Lovász & Schrijver (’83).

17
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Correspondence

graphs

balancedzero integrality gap

min. coloring games

perfect totally balanced
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Submodular games

. Def.Def. A game (N,γ) is submodular if

γ(S) + γ(T) ≥ γ(S ∪ T) + γ(S ∩ T) ∀ S, T ⊆ N.

S ∩ T

S ∪ T

T

S

Submodular games are extensively studied and known to have
a lot of nice properties. Among them, ...

19
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Submodularity and the core

. Thm.Thm. (Shapley ’71, Edmonds ’70)

(N,γ) is submodular =⇒ (N,γ) is totally balanced.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. RemarkRemark

Edmonds ’70 showed the above theorem in the context
of submodular-type optimization, which is a
generalization of matroid optimization and plays a
significant role in combinatorial optimization.

cooperative game theory ↔ combinatorial optimization

games ↔ set functions
core ↔ base polyhedron

20
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Correspondence

submodular?????

totally balancedperfect

min. coloring games

zero integrality gap balanced

graphs
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Non-submodular perfect graph

For G = K1 ∪ K2,
(V, χG) is not submodular.

Let S = {v1, v3}, T = {v2, v3}

v3

v1

v2

χG(S)︸ ︷︷ ︸
1

+ χG(T)︸ ︷︷ ︸
1

< χG(S ∪ T)︸ ︷︷ ︸
2

+ χG(S ∩ T)︸ ︷︷ ︸
1

.

v2

v1

v2

v1

v3v3v3v3
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Submodular min coloring games

. Thm.Thm. (Okamoto ’03)

The following statements are equivalent.

(1) A min coloring game (V, χG) is submodular.

(2) G contains no K1 ∪ K2 as its induced subgraph.

23
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Submodular min coloring games

. Thm.Thm. (Okamoto ’03)

The following statements are equivalent.

(1) A min coloring game (V, χG) is submodular.

(2) G contains no K1 ∪ K2 as its induced subgraph.

(3) G is a complete multipartite graph.

23
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Correspondence

multipartite
complete

submodular

totally balancedperfect

min. coloring games

zero integrality gap balanced

graphs
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Scope of today’s talk

Focus on cores and nucleoli of minimum coloring games

�� Def.: minimum coloring game
�� Def.: core
�� Properties:

Balancedness, Total balancedness, Submodularity
�� Characterization: the core for a perfect graph

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
�� Def.: nucleolus
�� Characterization: the nucleolus for a chordal graph
�� Open problems
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We saw the core...

What is good/bad for the core??

. Good :)Good :)

�� Easy to investigate.
�� Much is known.

. Bad :(Bad :(

�� Might be empty.
�� Even if not empty,

there might be many allocations in the core.
(We need another criterion to choose one of them.)

The nucleolus is another fairness concept,
which uniquely exists for every min coloring game.
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Excess

Let (N,γ) a game

z ∈ IRN a cost allocation
S ⊆ N (often called a coalition)

. Def.Def. An excess e(S, z) is defined as

e(S, z) :=
∑

i∈S
z[ i ] − γ(S).

. Interpretation:Interpretation: The smaller e(S, z), the happier S with z.

. FactFact z ∈ IRN belongs to the core of (N,γ)

⇐⇒ e(N, z) = 0 and e(S, z) ≤ 0 (∀ S ⊆ N).
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Enumerating the excesses...

Let (N,γ) be a game, z ∈ IRN a cost allocation

Consider the following procedure.

�� Enumerate e(S, z) for all S ∈ 2N \ {∅,N}.
�� Arrange these excesses in non-increasing order

to obtain θz ∈ IR2
|N|−2. (θz[ i ] ≥ θz[ j ] if i ≤ j.)

. ExampleExample

z =

(
1,
1

2
,
1

2

)>

θz =

(
1

2
, 0,−

1

2
,−
1

2
,−
1

2
,−1

)>

S γ(S) e(S, z)

∅ 0 (0)
{1} 1 0

{2} 1 −1/2
{3} 1 −1/2

{1, 2} 1 1/2

{1, 3} 2 −1/2
{2, 3} 2 −1

{1, 2, 3} 2 (0)
28
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Nucleolus

. Def.Def. The nucleolus of (N,γ) is defined as

ν(N,γ) =

{
z ∈ IRN :

z lex-mins θz over all cost alloc’s y
s.t. y[ i ] ≤ γ({i}) ∀i ∈ N

}
.

. Interpretation:Interpretation: The smaller e(S, z), the happier S with z.

⇒ Want an allocation which minimizes max excess.

. Thm.Thm. (Schmeidler ’69)

The nucleolus consists of a single vector.

So we usually say ν(N,γ) = z instead of ν(N,γ) = {z}.

29
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Example: nucleolus

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

ν =

(
1

2
,
1

2
, 1

)>
is the nucleolus.

θν =

(
0, 0,−

1

2
,−
1

2
,−
1

2
,−
1

2

)>
.

S {1} {2} {3} {1, 2} {1, 3} {2, 3}

γ(S) 1 1 1 1 2 2

e(S,ν) −1/2 −1/2 0 0 −1/2 −1/2

e(S,ν) :=
∑

i∈S
ν[ i ] − γ(S).
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Example: nucleolus

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

ν =

(
1

2
,
1

2
, 1

)>
is the nucleolus.

θν =

(
0, 0,−

1

2
,−
1

2
,−
1

2
,−
1

2

)>
.

. FactFact the core is nonempty ⇒ the nucleolus ∈ the core.
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Example: nucleolus

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

ν =

(
1

2
,
1

2
, 1

)>
is the nucleolus.

θν =

(
0, 0,−

1

2
,−
1

2
,−
1

2
,−
1

2

)>
.

Let z = λ(1, 0, 1)> + (1− λ)(0, 1, 1)> (0 ≤ λ ≤ 1)
= (λ, 1− λ, 1)>.

S {1} {2} {3} {1, 2} {1, 3} {2, 3}

γ(S) 1 1 1 1 2 2

e(S,z) λ− 1 −λ 0 0 λ − 1 −λ
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Example: nucleolus

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

ν =

(
1

2
,
1

2
, 1

)>
is the nucleolus.

θν =

(
0, 0,−

1

2
,−
1

2
,−
1

2
,−
1

2

)>
.

θz =

{
(0, 0,−λ,−λ, λ − 1, λ− 1)> if 0 ≤ λ ≤ 1/2
(0, 0, λ− 1, λ− 1,−λ,−λ)> if 1/2 ≤ λ ≤ 1
S {1} {2} {3} {1, 2} {1, 3} {2, 3}

γ(S) 1 1 1 1 2 2

e(S,z) λ− 1 −λ 0 0 λ − 1 −λ

30
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Computation of the nucleolus

Consider the computation of the nucleolus.

. Thm.Thm. (Faigle, Kern & Kuipers ’98)

It is NP-hard for totally balanced games.

. Thm.Thm. (Kuipers ’96, Faigle, Kern & Kuipers ’01)

It can be done in poly. time for submodular games.
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Correspondence

On the computation of the nucleolus

General ⊇ Min col. game

games NP-hard NP-hard
⊆ ⇑

balanced NP-hard ???

⊆ ⇑
totally balanced NP-hard ???

⊆

submodular poly ⇒ poly

32
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Nucleolus of a min coloring game

. Obs.Obs. The computation of the nucleolus of a min coloring

game is NP-hard.

. ProofProof Suppose we get the nucleolus ν in poly time.

⇒ Compute
∑

i∈V
ν[ i ] = χ(G).

⇒ We have obtained χ(G) in poly time.

⇒ P = NP. [qed]
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Correspondence

On the computation of the nucleolus of a min coloring game

Graph ↔ Min col. game

general NP-hard

⊆
zero duality gap ???

⊆

perfect ???

⊆

complete multipartite Poly
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Correspondence

On the computation of the nucleolus of a min coloring game

Graph ↔ Min col. game

general NP-hard

⊆
zero duality gap ???

⊆

perfect ???

⊆

O-good characterization

⊆

complete multipartite Poly
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O-good perfect graphs

. Thm.Thm.

The nucleolus for an O-good perfect graph G
is the barycenter of the core.

Namely,

ν[ i ] =
# of maximum cliques containing i

# of maximum cliques
.

36



37
p

O-good perfect graphs

. Thm.Thm.

The nucleolus for an O-good perfect graph G
is the barycenter of the core.

. RemarkRemark

(1) We omit the def. of O-good perfect graphs.

(2) The class of O-good perfect graphs contains

�� the graphs with unique maximum cliques
�� the complete multipartite graphs
�� the chordal graphs (especially the forests).

A graph is chordal if every induced cycle is of length 3.
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Example: nucleolus

z[ 1 ]

z[ 2 ]

z[ 3 ]
3

21

ν =

(
1

2
,
1

2
, 1

)>
is the nucleolus.

θν =

(
0, 0,−

1

2
,−
1

2
,−
1

2
,−
1

2

)>
.

Indeed, this graph is

{
a forest
complete multipartite.
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Example: nucleolus

Consider a complete multipartite graph.

1/3
1/3

1/3

1/2

1/3

1/2

1/31/3

We have

ν[ i ] =
1

ni
,

where ni is # of vertices of the class to which i belongs.
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Example: nucleolus

Consider a forest.

3/16

3/16

1/16

1/8

1/16
1/4

1/16

1/16

1/16

1/16

1/8

1/8

1/8 1/8

1/8

3/16

1/16

We have

ν[ i ] =
deg(i)

|E|
,

where deg(i) is # of edges incident to i.

39



40
p

Example: nucleolus

For chordal graphs, we can use the following theorem
to compute the nucleoli.

. Thm.Thm. (Fulkerson & Gross ’65)

In a chordal graph, # of maximal cliques ≤ # of vertices.

Moreover, we can enumerate them in poly time.

. Proof SketchProof Sketch

1 3 6 2 4 56

1 3

4

2

5
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Outline of the proof

(1) Use the LP formulation for the nucleolus computation.
(Peleg)

By solving a sequence of LP problems, we can
obtain the nucleolus (not in poly time).

(2) Identify the essential coalitions. (Huberman ’80)
The essential coalitions reduce the work load.
S ⊆ V is essential ⇔ S is an independent set.

(3) Analyze the LP.
For O-good perfect graphs, we can precisely tell
what are the optimal solutions in the LP problems
with help of the characterization of the extreme
points of the core.
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Summary: the nucleolus

bipartiteforests

graphs

zero integrality gap

perfect

complete
chordal

multipartite
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Example: bipartite graph

There is a bipartite graph for which the nucleolus is not
the barycenter of the char. vectors of the maximum cliques.

2/3 1/3

1/31/31/3

43



44
p

The state of the art

Core Nucleolus

bipartiteforests

graphs

zero integrality gap

perfect

complete
chordal

multipartite bipartiteforests

graphs

zero integrality gap

perfect

complete
chordal

multipartite

τ-value Shapley value

bipartiteforests

graphs

zero integrality gap

perfect

complete
chordal

multipartite bipartiteforests

graphs

zero integrality gap

perfect

complete
chordal

multipartite
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Open problems: minimum coloring games

�� Nucleolus for perfect graphs ??
�� Nucleolus for bipartite graphs ??
�� Shapley value for perfect graphs ??
�� Shapley value for bipartite graphs ??
�� Cost allocations for other kinds of graphs ??
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Conclusion

The list of what we discussed

�� Def.: minimum coloring game
�� Def.: core
�� Properties:

Balancedness, Total balancedness, Submodularity
�� Characterization: the core for a perfect graph
�� Def.: nucleolus
�� Characterization: the nucleolus for a chordal graph
�� Open problems
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Research paradigm

. Framework:Framework: Several people are willing to work together...

�� They want to have a largest possible benefit.
(optimization theory)

�� They want to allocate the benefit in a fair way.
(cooperative game theory)

. StatusStatus of algorithmic problems on cooperative games

�� As many cooperative games as optimization problems!!
�� Many algorithmic problems remain unsolved!!

=⇒ Why not work on them??

[End of the talk]
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