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Abstract

Submodularity (or concavity) is considered as an important prop-
erty in the field of cooperative game theory. In this article, we char-
acterize submodular minimum coloring games and submodular min-
imum vertex cover games. These characterizations immediately show
that it can be decided in polynomial time that the minimum coloring
game or the minimum vertex cover game on a given graph is sub-
modular or not. Related to these results, the Shapley values are also
investigated.
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1 Introduction

In this article, we investigate minimum coloring games and minimum ver-
tex cover games. Generally, a cooperative game arising from a combina-
torial optimization problem is called a combinatorial optimization game,
and so a minimum coloring game and a minimum vertex cover game are
examples of combinatorial optimization games. Perhaps, the most classi-
cal combinatorial optimization game is an assignment game by Shapley–
Shubik [17], and since then a lot of combinatorial optimization games have
been introduced. See the books [1, 3] for some aspects of combinatorial
optimization games.

Particularly, some combinatorial optimization games are used to model
several situations concerning cost allocation. Here is an example. Con-
sider a company which operates a cellular telephone network. It has some
transmitters. Each transmitter covers the corresponding area (usually a
disk centered at the transmitter) and frequency bands will be assigned
to thetransmitters. Here, distinct frequency bands should be assigned to
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two transmitters if they share an area. In the simplest assignment all the
transmitters have distinct frequency bands, but it costs high. By cooper-
ating with each other, they can reduce the cost. So now, the problem is
how to allocate the total cost to each transmitter. We consider this problem
as a game-theoretic situation, and a minimum coloring game is one of the
possible models of the situation.

In this article, we discuss submodularity of the minimum coloring game
and the minimum vertex cover game. In the next section, we characterize
submodular minimum coloring games and submodular minimum vertex
cover games. In Section 3, we give formulae of the Shapley values for these
games. In Section 4, we state the relationship of our results with matroids.

2 Minimum coloring games, minimum vertex cover
games and submodularity

First we collect some terminology on graphs. If you have something miss-
ing, see a textbook of graph theory (as Diestel [6]). In this article, all graphs
are finite and simple. For a graph G = (V, E), the vertex set V and the edge
set E are sometimes denoted as V(G) and E(G), respectively. For S ⊆ V(G),
the subgraph induced by S is denoted by G[S].

A vertex coloring (or simply a coloring) of G = (V, E) is a function c :

V → {1, . . . , k} such that c(u) 6= c(v) for any edge {u, v} ∈ E. For a coloring
c : V → {1, . . . , k}, each element in {1, . . . , k} is called a color, and a vertex
v ∈ V is said to be colored by i ∈ {1, . . . , k} if c(v) = i. A minimum coloring
of G is a coloring c : V → {1, . . . , k} such that k is as small as possible, and
such k is called the chromatic number of G. The chromatic number of G
is denoted by χ(G). If G is the empty graph, i.e., G has no vertex, we set
χ(G) = 0.

A vertex cover of G = (V, E) is a subset U ⊆ V such that every edge e ∈ E
is incident with some vertex v ∈ U, i.e., v ∈ e. A minimum vertex cover of G
is a vertex cover U ⊆ V such that |U| ≤ |U ′| for any vertex cover U ′ ⊆ V. We
denote the size of a minimum vertex cover of G by τ(G). Note that τ(G) = 0

if G has no edge.
A set S ⊆ V is called a clique of G = (V, E) if G[S] forms a complete graph

(i.e., any two vertices in G[S] form an edge). A set S ⊆ V is called a stable
set of G if G[S] has no edge.

Now we introduce a cooperative game.
A cooperative game is defined as a function γ : 2X → R for a nonempty

finite set X, which satisfies γ(∅) = 0. A player of a cooperative game is an
element of X. For a set S ⊆ X of players, the value γ(S) is regarded as a
minimum cost owed by the players of S when they cooperate.

A cooperative game is submodular (or concave) if for any S, T ⊆ X the
inequality γ(S) + γ(T) ≥ γ(S ∪ T) + γ(S ∩ T) holds. Submodularity can be
interpreted as follows. If the players of T \ S make a coalition with S and
S ∩ T , then the costs will increase by γ(S ∪ T) − γ(S) and γ(T) − γ(S ∩ T),
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respectively. Now, by submodularity, the set with more players (i.e., S than
S ∩ T ) has the less cost increase (i.e., γ(S ∪ T) − γ(S) ≤ γ(T) − γ(S ∩ T)). This
means that the set with more players has potentially more incentive for
other players to join, and we can see this is a natural condition in the real
life. Also, in cooperative game theory submodularity is known to possess
some important properties. For example, the core of a submodular game
is nonempty, it is a unique von Neumann-Morgenstern solution, and the
Shapley value is the barycenter of the core (when the degeneracy is taken
into account) [16]. Moreover, in a submodular game, the core and the
bargaining set coincide and the kernel and the nucleolus coincide [12]. In
addition, the nucleolus and the τ-value can be computed in polynomial
time for a submodular game ([11] and [18] respectively).

Refer to Bilbao [1] and Curiel [3] for cooperative game theory with em-
phasis on combinatorial optimization games. Also, see Fujishige [8] for an
appearance of submodularity in the context of combinatorial optimization
and network flows.

In this article, we investigate two kinds of combinatorial optimization
games associated with a graph G = (V, E). The minimum coloring game on
a graph G is a function χG : 2V → N defined as χG(S) = χ(G[S]) for S ⊆ V.
Recall that G[S] is the subgraph of G induced by S. The minimum vertex
cover game on G is a function τG : 2E → N defined as τG(S) = τ((V, S)) for
S ⊆ E. Here, (V, S) is a subgraph of G = (V, E) but is not necessarily an
induced subgraph.

Our theorems are the following.

Theorem 1. The following are equivalent for a graph G = (V, E).

(A) The minimum coloring game χG is submodular.
(B) G contains no induced subgraph isomorphic to K1 ∪K2. Here, K1 ∪K2 is

a graph with three vertices a, b, c and one edge {a, b}.
(C) G is a complete r-partite graph.

Theorem 2. The following are equivalent for a graph G = (V, E).

(A) The minimum vertex cover game τG is submodular.
(B) G contains no subgraph isomorphic to K3 or P3. Here, K3 is a complete

graph with three vertices, and P3 is a path of length three (i.e., with
four vertices).

(C) Each connected component of G is a star. Here, a star is such a bipar-
tite graph that one partition class has exactly one vertex. We regard a
graph with one vertex as a star.

These theorems immediately imply that the problem deciding the sub-
modularity of minimum coloring games (and minimum vertex cover games,
respectively) on a given graph can be solved in polynomial time.

Remark that the problems deciding the balancedness (and the total-
balancedness, respectively) of minimum coloring games and minimum ver-
tex cover games are investigated by Deng–Ibaraki–Nagamochi [4] (and Deng–
Ibaraki–Nagamochi–Zang [5], respectively).
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2.1 Proof of Theorem 1

First we show (A)⇒(B). That is, if G contains an induced subgraph isomor-
phic to K1 ∪ K2, then χG cannot be submodular. To show this, we use the
observation that if H is an induced subgraph of G and χG is submodular,
then χH is also submodular. From this observation, it suffices to show that
χK1∪K2 is not submodular. This is not so difficult to show.

Next we show (B)⇒(C). Since that G is complete r-partite is equivalent
to that all connected components of the complement G of G are complete
graphs, we show that if G has a component C which is not complete, then
G contains an induced subgraph isomorphic to K1 ∪ K2.

Let V(C) be the vertex set of C. This claim is straightforward if |V(C)| ≤ 2.
So we assume that |V(C)| ≥ 3. Since C is not a complete graph in G, there
exist two vertices a, b ∈ V(C) which are not adjacent in G. Then there must
be a path from a to b in G since C is a connected component of G. Let us
denote this path by v0, v1, v2, . . . , vk−1, vk, where a = v0 and b = vk. Here, put
i = min{j ∈ {1, . . . , k} : a and vj are not adjacent}. Note that such an i always
exists because a and b are not adjacent and i cannot be 1. So G[{a, vi−1, vi}]

is a path of length two in G. This means that G[{a, vi−1, vi}] is isomorphic to
K1 ∪ K2 in G. Thus the claim has been shown.

Finally, we show (C)⇒(A). That is, if G is complete r-partite, then χG is
submodular. Let G = (V, E) be complete r-partite and V1, V2, . . . , Vr be the
partition classes of V. Here, for any S ⊆ V we have χG(S) = |{i ∈ {1, . . . , r} :

Vi ∩ S 6= ∅}|. Let us define a map π : 2V → 2{1,...,r} as π(S) = {i ∈ {1, . . . , r} :

Vi ∩ S 6= ∅}. With this map, we can write χG(S) = |π(S)|. Observe that the
map π has the following properties for a complete r-partite graph G: for
any S, T ⊆ V

• π(S ∪ T) = π(S) ∪ π(T),

• π(S ∩ T) ⊆ π(S) ∩ π(T).

Using these properties, we can prove the submodularity of χG as follows.

χG(S) + χG(T) = |π(S)| + |π(T)|

= |π(S) ∪ π(T)| + |π(S) ∩ π(T)|
≥ |π(S ∪ T)| + |π(S ∩ T)|
= χG(S ∪ T) + χG(S ∩ T).

Thus we have completed the proof of Theorem 1.

2.2 Proof of Theorem 2

First we show (A)⇒(B). That is, if G contains a subgraph isomorphic to
P3 or K3, then τG is not submodular. Here, we use the fact that if H is a
subgraph of G and τG is submodular, then τH is also submodular. With
this fact, it suffices to show that neither τP3 nor τK3 is submodular. This is
not so difficult to show.
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Next, we show (B)⇒(C). That is, if there exists a connected component
of G which is not a star, then G contains a subgraph isomorphic to P3 or
K3.

Let C be a connected component of G which is not a star. Consider the
case that C is not bipartite. Then C has a cycle of odd length. When this
length is three, this cycle is isomorphic to K3. When this length is five or
more, along this cycle we can find P3. Next consider the case that C is
bipartite. In this case, since C is not a star, we have P3 as a subgraph of C.
Thus, we have shown (B)⇒(C).

Finally we show (C)⇒(A). That is, if every connected component of G is
a star, then τG is submodular.

Let G = (V, E) be a graph with every component being a star and C1, . . . , Cr
be the connected components of G. Then for any S ⊆ E we have τG(S) =

|{i ∈ {1, . . . , r} : E(Ci) ∩ S 6= ∅}|. Here, define a map π : 2E → 2{1,...,r} as
π(S) = {i ∈ {1, . . . , r} : E(Ci)∩S 6= ∅}. With this map, we can write τG(S) = |π(S)|.

Observe that the map π has the following properties when every con-
nected component of G is a star: for S, T ⊆ E
• π(S ∪ T) = π(S) ∪ π(T),
• π(S ∩ T) ⊆ π(S) ∩ π(T).

By these properties, we can show the submodularity of τG as in the proof
of Theorem 1.

This completes the whole proof of Theorem 2.

3 The Shapley value

The Shapley value is an important concept in cooperative game theory.
First we will define marginal contributions which are needed in the defini-
tion of the Shapley value. Consider a linear order ≤π on a finite set X with
n elements. Such an order has a one-to-one correspondence with a per-
mutation π ∈ Sn on X, and we have n! possible linear orders. (Sn represents
the set of all permutations on a set with n elements.) For a linear order
≤π, put Pπ(i) = {j ∈ X : j ≤π i}. Note that i ∈ Pπ(i). For a cooperative game
γ : 2X → R, we define the marginal contribution m

γ
π[i] ∈ R of a player i ∈ X

with respect to a linear order ≤π as

mγπ[i] = γ(Pπ(i)) − γ(Pπ(i) \ {i}).

This means how much the cost increases due to the player i when the
players gather one by one according to the order ≤π so as to form X. By
the definition of the marginal contribution, we have

∑
{m
γ
π[i] : i ∈ X} = γ(X)

for any π ∈ Sn.
The Shapley value ϕγ[i] ∈ R of a player i ∈ X for a cooperative game

γ : 2X → R is defined as

ϕγ[i] =
1

n!

∑

π∈Sn
mγπ[i].
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This means, the Shapley value ϕγ[i] of the player i is the expectation of the
marginal contributions mγπ[i] when a permutation π is chosen uniformly at
random from Sn. We can see that

∑
{ϕγ[i] : i ∈ X} = γ(X).

Symmetry is an important property of the Shapley value. Here, two
players i, j ∈ X are said to be symmetric if for any S ⊆ X \ {i, j} it holds that
γ(S ∪ {i}) = γ(S ∪ {j}). Here is a well-known lemma on symmetric players.

Lemma 1. For a cooperative game γ : 2X → R, the Shapley values of sym-
metric players are equal: ϕγ[i] = ϕγ[j] for symmetric i, j ∈ X.

In this section, we explicitly write down the formulae of the Shapley
values of submodular minimum coloring games and submodular mini-
mum vertex cover games. From these formulae, we can compute the
Shapley values for submodular minimum coloring games and submod-
ular minimum vertex cover games. Note that generally it is NP-hard to
compute the Shapley values for minimum coloring games and minimum
vertex cover games. Otherwise, by computing

∑
{ϕχG [i] : i ∈ V} = χ(G) (or∑

{ϕτG [i] : i ∈ E} = τ(G)), we could tell what was the chromatic number (or
the size of a minimum vertex cover, respectively) of G. However, compu-
tation of the chromatic number (or the size of a minimum vertex cover) is
known to be NP-hard [9].

3.1 The Shapley value for submodular minimum coloring games

From Theorem 1, the minimum coloring game χG is submodular if and only
if G is complete r-partite. In this subsection, we assume that G satisfies
this property. Let V1, . . . , Vr be the partition classes of G. Then, we can see
that two vertices from the same partition class Vi are symmetric players.
That is because for v ∈ Vi and S ⊆ V \ {v}, χG(S) = χG(S ∪ {v}) holds if S
contains a vertex of Vi, and otherwise χG(S) = χG(S ∪ {v}) − 1 holds, which
does not depend on the choice of v from Vi. Lemma 1 says that the Shapley
values of symmetric players are equal, so we are allowed to denote the
Shapley value of a player in Vi by ϕi.

Let us compute the Shapley value ϕi of a player v ∈ Vi. First we fix a
linear order ≤π on the vertex set V and compute the marginal contribution
m
χG
π [v]. From the discussion above, we have

mχGπ [v] =

{
1 (Pπ(v) ∩ Vi = {v})

0 (otherwise),

that is, mχGπ [v] is 1 if v is the minimum of a linear order ≤π restricted to Vi
and otherwise mχGπ [v] is 0. Thus, the Shapley value ϕi is written as, with
n = |V |,

ϕi = Pr(Pπ(v) ∩ Vi = {v} : π is chosen from Sn u.a.r. )

= Pr(v ≤π u for all u ∈ Vi : π is chosen from Sn u.a.r. )

=
1

|Vi|
.
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Here, “u.a.r.” means “uniformly at random.”

3.2 The Shapley value for submodular minimum vertex cover
games

By Theorem 2, the minimum vertex cover game τG is submodular if and
only if every connected component of G is a star. In this subsection, we
assume that G satisfies this property. Let C1, . . . , Cr be the connected com-
ponents of G. Here, we can see that two edges from the same Ci are sym-
metric players. From Lemma 1 symmetric players have the same Shapley
value, so we are allowed to write ϕi for the Shapley value of a player from
Ci.

Let us compute the Shapley value ϕi of e ∈ E(Ci). First fix a linear
order ≤π on the edge set E and compute the marginal contribution mτGπ [e].
Similarly to the case of the submodular minimum coloring games, we have

mτGπ [e] =

{
1 (Pπ(e) ∩ E(Ci) = {e})

0 (otherwise).

Therefore, the Shapley value ϕi is written as, with n = |E|,

ϕi = Pr(Pπ(e) ∩ E(Ci) = {e} : π is chosen from Sn u.a.r. )

= Pr(e ≤π f for all f ∈ E(Ci) : π is chosen from Sn u.a.r. )

=
1

|E(Ci)|
.

4 Relationship with matroids

In this section, we state the relationship between Theorems 1, 2 and ma-
troids. For a detail of matroid theory, see Murota [13], Oxley [14] and so
on.

A matroid is a pair (X, I) of a nonempty finite set X and a family I ⊆ 2X
which satisfies the following conditions:

(I1) ∅ ∈ I;
(I2) T ∈ I implies S ∈ I for any S ⊆ T ⊆ X;
(I3) for any S, T ∈ I with |S| > |T | there exists i ∈ S \ T such that T ∪ {i} ∈ I.

An independent set of a matroid (X, I) is a member of I. For a matroid
(X, I), we define a function ρ : 2X → N as ρ(S) = max{|T | : T ⊆ S, T ∈ I}. This
function ρ is called the rank function of the matroid (X, I). It is known that
the rank function of a matroid satisfies the following properties:

(R1) 0 ≤ ρ(S) ≤ |S| for any S ⊆ X;
(R2) ρ(S) ≤ ρ(T) for any S ⊆ T ⊆ X;
(R3) ρ(S) + ρ(T) ≥ ρ(S ∪ T) + ρ(S ∩ T) for any S, T ⊆ X.
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Conversely, if an integer-valued set function ρ : 2X → N satisfies these three
conditions, then for a family I = {I ⊆ X : |I| = ρ(I)}, (X, I) is a matroid. In
this sense, the properties (R1)–(R3) characterize a matroid.

Here, observe that χG satisfies the properties (R1)–(R3) if G contains no
induced subgraph isomorphic to K1 ∪ K2. The property (R1) is easy. The
property (R3) is Theorem 1 itself. The property (R2) follows from the next
lemma.

Lemma 2. For any S ⊆ V satisfying |V \ S| ≥ 1 and any v ∈ V \ S, it holds
that χG(S) ≤ χG(S ∪ {v}) ≤ χG(S) + 1.

Proof. Let c : S → {1, . . . , k} be a minimum coloring of G[S], i.e., χ(G[S]) = k.
Then, construct a coloring c ′ : S ∪ {v}→ {1, . . . , k, k+ 1} of G[S ∪ {v}] as c ′(v) =

k+ 1 and c ′(i) = c(i) for i ∈ S. Hence, χG(S ∪ {v}) ≤ k+ 1 = χG(S) + 1.
On the other hand, let c ′ : S ∪ {v} → {1, . . . , l} be a minimum coloring of

G[S ∪ {v}], i.e., χ(G[S ∪ {v}]) = l. Then, construct a coloring c : S→ {1, . . . , l} of
G[S] as c(i) = c ′(i) for all i ∈ S. Hence, χG(S) ≤ l = χG(S ∪ {v}).

Here, remark that χG satisfies the properties (R1) and (R2) for any graph
G. Moreover, χG satisfies the property (R3) if and only if G contains no
induced subgraph isomorphic to K1 ∪ K2 due to Theorem 1. Therefore, the
conditions in Theorem 1 are equivalent to that χG is the rank function of a
matroid.

Then, what is a matroid (V, I) with the rank function χG when G con-
tains no induced subgraph isomorphic to K1 ∪ K2? An independent set is
a set I ∈ I satisfying |I| = χ(G[I]). This means that I is a clique of G. That
is, if G contains no induced subgraph isomorphic to K1 ∪K2 and we denote
the family of the cliques of G by I, then (V, I) is a matroid, and vice versa.
In general, a family satisfying the properties (I1) and (I2) is called a simpli-
cial complex or an independence system, and the family of the cliques of a
graph is a simplicial complex. In the past literature, this is called a clique
complex.

One of the most prominent feature of matroids is the validity of a greedy
algorithm, which finds a maximum weighted base. A maximal independent
set of a matroid is called a base of the matroid. It is known that all the
bases have the same size, i.e., if B1 and B2 are bases of a matroid, then
|B1| = |B2|. Later on, we use the terminology of matroids (as independent
sets, bases,...) even for a simplicial complex which may not satisfy (I3). For
a simplicial complex (X, I) and a non-negative weight vector w ∈ RX+, we
consider a problem computing a maximum weighted base. More formally,
the maximum weighted base problem can be stated as

maximize
∑

i∈B
w[i]

subject to B is a base of (X, I).

It is known that this problem is related to matroids through the fol-
lowing greedy algorithm. More precisely speaking, the following greedy
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algorithm returns an optimal solution for any non-negative weight vector
w ∈ RX+ if and only if the simplicial complex (X, I) is a matroid [7, 15].

Algorithm: GREEDY ALGORITHM

Input: a simplicial complex (X, I) and a non-negative weight vector w ∈ RX+;

Step 1: sort X = {1, . . . , n} so that w[1] ≥ w[2] ≥ · · · ≥ w[n];

Step 2: S← ∅;

Step 3: for i = 1 to n do

Step 3-1: if S ∪ {i} ∈ I then S← S ∪ {i};

end of for

Step 4: return S.

Remark that if a simplicial complex (X, I) is a clique complex, then the
maximum weighted base problem corresponds to the maximum weighted
clique problem. What is known for arbitrary graph G is that the maximum
weighted clique problem is NP-hard [9]. Some details can be found in a
textbook of combinatorial optimization (like Cook–Cunningham–Pulleyblank–
Schrijver [2] or Korte–Vygen [10]).

Synthesizing the discussion above, we have the following corollary.

Corollary 1. Let G = (V, E) be a graph and I be the family of all cliques
of G. Then the conditions in Theorem 1 are equivalent to the following
statements.

1. (V, I) is a matroid.
2. For any non-negative weight vector w ∈ RV+, the maximum weighted

clique problem is solved by GREEDY ALGORITHM.
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