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() Combinatorial abstract models of geometric concepts

�� Matroids . . . . . . . . . . . . . . . . . . . abstraction of dependence

Application:





Finite geometry
Coding theory
Combinatorial optimization

�� Oriented Matroids . . . . . . . . . abstraction of dependence

Application:





Convex polytopes
Computational geometry
Discrete geometry
Optimization

�� Convex geometries . . . . . . . . . . . abstraction of convexity

Application:





Discrete geometry
Social choice theory
Mathematical psychology
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() Representation theorems

�� Matroids . . . . . . . . . . . . . . . . . . . abstraction of dependence

Every matroid can be represented
as a homotopy-sphere arrangement.
(Swartz, ’02)





Finite geometry
Coding theory
Combinatorial optimization

�� Oriented Matroids . . . . . . . . . abstraction of dependence

Every oriented matroid can be represented
as a pseudohyperplane arrangement.
(Forkman–Lawrence, ’78)





Convex
Comput
Discre
Optimi

�� Convex geometries . . . . . . . . . . . abstraction of convexity

??????????





Discrete geometry
Social choice theory
Mathematical psychology
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() Answer

. Our Theorem:Our Theorem:

Any convex geometry is isomorphic to
some generalized convex shelling,

P Q

determined by two point sets P and Q
satisfying that conv(P) ∩ conv(Q) = ∅.

This gives an affine representation of a convex geometry.
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() Contents

. Our Theorem:Our Theorem:

Any convex geometry is isomorphic to
some generalized convex shelling.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the rest of my talk

�� Definition of a convex geometry

�� Examples of a convex geometry

�� Definition of a generalized convex shelling

�� Our theorem

�� Outline of the proof

4



5
p

() Convex geometries

. (Edelman–Jamison ’85)

E a nonempty finite set

L a nonempty family of subsets of E

. Def.Def. L ⊆ 2E is called a convex geometry on E

Def. if L satisfies the following three conditions.

(1) ∅ ∈ L, E ∈ L.

(2) X, Y ∈ L =⇒ X ∩ Y ∈ L.

(3) X ∈ L \ {E} =⇒ ∃ e ∈ E \ X s.t. X ∪ {e} ∈ L.
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() Example 1: convex shelling

Q a finite point set in IRd

Define: L = {X ⊆ Q : conv(X) ∩ (Q \ X) = ∅}.

1
123 134

1423

1234

234

12

432 21 3 4

∅

3413

L is a convex geometry and called the convex shelling on Q.
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() Example 2: poset shelling

P = (E,≤) a partially ordered set

Define: L = {X ⊆ E : e ∈ X, f ≤ e⇒ f ∈ X}.

4

2 1

∅

1234

3

1

24

2

124123

12

L is a convex geometry on E and called the poset shelling of P.
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() Example 3: tree shelling

T = (V, E) a tree

Define:

L = {X ⊆ E : X forms a subtree of T }.

123

∅
4

3412 13 232

21 3

234

1234

13431

4

L is a convex geometry on E and called the tree shelling of T
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() Example 4: cupstacks

What is “cupstacks”?

Construct the tower from the pile and get it back
as quickly as possible.
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() Example 4: cupstacks

A sequence in collapsing
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() Other examples

Various objects yield convex geometries.

�� From graphs

•• Tree shellings on vertices
•• Graph search
•• Simplicial elimination of chordal graphs

�� From partially ordered sets

•• Poset double shellings
•• k-chains in partially ordered sets

�� From finite point sets in IRd

•• Lower convex shellings on point sets

�� From oriented matroids

•• Convex shellings of acyclic oriented matroids

�� ...
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() Our Theorem (again)

. Our Theorem:Our Theorem:

Any convex geometry is isomorphic to
some generalized convex shelling,

P Q

determined by two point sets P and Q
satisfying that conv(P) ∩ conv(Q) = ∅.

This gives an affine representation of a convex geometry.
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() Generalized convex shelling

P,Q finite point sets in IRd satisfying conv(P) ∩Q = ∅
Define: L = {X ⊆ Q : conv(X ∪ P) ∩ (Q \ X) = ∅}.

p2

p1 134

1432

1

∅

1234

34

4

234

14

L is a convex geometry on Q and called
the generalized convex shelling on Q with respect to P.
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() Our theorem (again)

. Our TheoremOur Theorem

Any convex geometry is isomorphic to

some generalized convex shelling.

In other words,

For any convex geometry L,

there exist finite point sets P and Q such that

L is isomorphic to

the generalized convex shelling on Q w.r.t. P.
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() An illustration

∅

1234

34

4

234

14

1

134 p1

432

1

p2
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() What does the theorem mean? (1)

Tree shellings

Convex geometries

Convex shellings

Poset shellings
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() What does the theorem mean? (1)

Tree shellings

Convex shellings

Poset shellings

Convex geometries = Generalized convex shellings
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() What does the theorem mean? (2)

�� For oriented matroids and matroids, we have

Topological representation theorems.

�� For convex geometries, we have

Affine representation theorem.

=⇒ An intrinsic simplicity of convex geometries
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() Outline of the proof

The proof goes along the following line.

We are given a convex geometry L.

(1) Construct:
point sets P and Q from L.

(2) Show:
L ∼= the generalized convex shelling on Q w.r.t. P.

17
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() Proof for a special case

To illustrate the proof, we will show a much weaker version.

. What we will showWhat we will show

For any poset shelling L
there exist point sets P and Q such that

L is isomorphic to

the generalized convex shelling on Q w.r.t. P.
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() Construction of a point set Q

Given a partially ordered set P = (E,≤). Let n := |E|.

. Construction of QConstruction of Q

We use the (n− 1)-dimensional space IRn−1.

For each e ∈ E, put a point q(e) such that

For each e ∈ E {q(e) : e ∈ E} is affinely independent,

For each e ∈ E (conv({q(e) : e ∈ E}) is an (n− 1)-simplex).

Let Q = {q(e) : e ∈ E}.

19
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() Construction of a point set P

Given a partially ordered set P = (E,≤). Let n := |E|.

. Construction of PConstruction of P

For each e1, e2 ∈ E such that e1 < e2,

Put a point p(e1, e2) such that q(e1) =
p(e1, e2) + q(e2)

2
.

p(e1, e2)

q(e1) q(e2)

Let P = {p(e1, e2) : e1, e2 ∈ E, e1 < e2}.

.
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() Construction of a point set P
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p(1, 3)

p(2, 3)

q(2)
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1 2

3 q(3)

20



20
p

() Construction of a point set P

Given a partially ordered set P = (E,≤). Let n := |E|.

. Construction of PConstruction of P

For each e1, e2 ∈ E such that e1 < e2,

Put a point p(e1, e2) such that q(e1) =
p(e1, e2) + q(e2)

2
.

p(1, 2)

p(1, 3)

p(2, 3)

q(2)q(1)

1

2

3 q(3)

20



20
p

() Construction of a point set P

Given a partially ordered set P = (E,≤). Let n := |E|.

. Construction of PConstruction of P

For each e1, e2 ∈ E such that e1 < e2,
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2
.

43

21

p(2, 3)

q(3)

q(1)

p(2, 4)

q(4)

q(2)

p(1, 3)
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() Outline of the proof

The proof goes along the following line.

We are given a convex geometry L.

(1) Construct:
point sets P and Q from L. . . . . . . . . . . . . . . . . . . . DONE!

(2) Show:
L ∼= the generalized convex shelling on Q w.r.t. P.
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() The final claim

. ClaimClaim the poset shelling of P = (E,≤)

Claim ∼= the generalized convex shelling on Q w.r.t. P.

. Proof sketch.Proof sketch.

(1) When is e ∈ E allowed to be removed?

e is allowed
to be removed

⇐⇒ all f’s such that e < f
have been already removed.

f2f1

e
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() The final claim

. ClaimClaim the poset shelling of P = (E,≤)

Claim ∼= the generalized convex shelling on Q w.r.t. P.

. Proof sketch.Proof sketch.

(2) When is q(e) ∈ Q allowed to be removed?

q(e) is allowed
to be removed

⇐⇒ all q(f)’s s.t. p(e, f) ∈ P
have been already removed.

q(e) q(f)

p(e, f)

“=⇒” is straightforward from the construction.
“⇐=” needs some investigations.
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e is allowed
to be removed

⇐⇒ all f’s such that e < f

have been already removed.

(2) When is q(e) ∈ Q allowed to be removed?

q(e) is allowed
to be removed

⇐⇒ all q(f)’s s.t. p(e, f) ∈ P
have been already removed.

(3) e < f ⇐⇒ p(e, f) ∈ P .
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() The final claim

. ClaimClaim the poset shelling of P = (E,≤)

Claim ∼= the generalized convex shelling on Q w.r.t. P.

. Proof sketch.Proof sketch.

(1) When is e ∈ E allowed to be removed?

e is allowed
to be removed

⇐⇒ all f’s such that e < f

have been already removed.

(2) When is q(e) ∈ Q allowed to be removed?

q(e) is allowed
to be removed

⇐⇒ all q(f)’s s.t. p(e, f) ∈ P
have been already removed.

Hence, the mapping “e 7−→ q(e)” is an isomorphism. [qed]

22



23
p

() The final slide

What was our theorem??

. Our TheoremOur Theorem

Any convex geometry is isomorphic to

some generalized convex shelling.

This theorem is expected to be useful
for a lot of problems in convex geometries.

. Further WorkFurther Work How useful can it be?

. [End of the talk]
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