Affine representations of abstract convex geometries

Yoshio Okamoto (ETH Zürich)

19th European Workshop on Computational Geometry March 25, 2003 @ Bonn, Germany

Joint work with Kenji Kashiwabara and Masataka Nakamura (The University of Tokyo)

Supported by the Berlin-Zürich Joint Graduate Program

$\sqrt[1]{}$ Combinatorial abstract models of geometric concepts	
Matroids	of dependence
Application:	<pre>{ Finite geometry Coding theory Combinatorial optimization</pre>
Oriented Matroids abstraction of dependence	
Application:	Convex polytopes Computational geometry Discrete geometry Optimization
Convex geometriesabstraction of convexity	
Application:	{ Discrete geometry { Social choice theory Mathematical psychology

Matroidsabstraction of dependence

Every matroid can be represented as a homotopy-sphere arrangement. (Swartz, '02)

• **Oriented Matroids** abstraction of dependence

Every oriented matroid can be represented as a pseudohyperplane arrangement. (Forkman–Lawrence, '78)

Convex geometriesabstraction of convexity

Our Theorem:

Any convex geometry is isomorphic to some generalized convex shelling,

determined by two point sets P and Q satisfying that $conv(P) \cap conv(Q) = \emptyset$.

This gives an affine representation of a convex geometry.

Our Theorem:

Any convex geometry is isomorphic to some generalized convex shelling.

In the rest of my talk

- Definition of a convex geometry
- Examples of a convex geometry
- Definition of a generalized convex shelling
- Our theorem
- Outline of the proof

Convex geometries

(Edelman–Jamison '85)

E a nonempty finite set

 $\ensuremath{\mathcal{L}}$ a nonempty family of subsets of E

Def.
$$\mathcal{L} \subseteq 2^{E}$$
 is called a convex geometry on E if \mathcal{L} satisfies the following three conditions

(1) $\emptyset \in \mathcal{L}, E \in \mathcal{L}.$ (2) $X, Y \in \mathcal{L} \Longrightarrow X \cap Y \in \mathcal{L}.$ (3) $X \in \mathcal{L} \setminus \{E\} \Longrightarrow \exists e \in E \setminus X \text{ s.t. } X \cup \{e\} \in \mathcal{L}.$

Q a finite point set in ${\rm I\!R}^d$

Define: $\mathcal{L} = \{ X \subseteq Q : \operatorname{conv}(X) \cap (Q \setminus X) = \emptyset \}.$

Q a finite point set in ${\rm I\!R}^d$

Define: $\mathcal{L} = \{ X \subseteq Q : \operatorname{conv}(X) \cap (Q \setminus X) = \emptyset \}.$

Q a finite point set in ${\rm I\!R}^d$

Define: $\mathcal{L} = \{ X \subseteq Q : \operatorname{conv}(X) \cap (Q \setminus X) = \emptyset \}.$

Q a finite point set in ${\rm I\!R}^d$

Define: $\mathcal{L} = \{ X \subseteq Q : \operatorname{conv}(X) \cap (Q \setminus X) = \emptyset \}.$

Q a finite point set in ${\rm I\!R}^d$

Define: $\mathcal{L} = \{ X \subseteq Q : \operatorname{conv}(X) \cap (Q \setminus X) = \emptyset \}.$

Q a finite point set in ${\rm I\!R}^d$

Define: $\mathcal{L} = \{ X \subseteq Q : \operatorname{conv}(X) \cap (Q \setminus X) = \emptyset \}.$

Q a finite point set in ${\rm I\!R}^d$

Define: $\mathcal{L} = \{ X \subseteq Q : \operatorname{conv}(X) \cap (Q \setminus X) = \emptyset \}.$

Example 2: poset shelling

 $\mathcal{P} = (E, \leq)$ a partially ordered set

Define: $\mathcal{L} = \{ X \subseteq E : e \in X, f \leq e \Rightarrow f \in X \}.$

 \mathcal{L} is a convex geometry on E and called the poset shelling of \mathcal{P} .

Example 2: poset shelling

 $\mathcal{P} = (E, \leq)$ a partially ordered set

Define: $\mathcal{L} = \{ X \subseteq E : e \in X, f \leq e \Rightarrow f \in X \}.$

 \mathcal{L} is a convex geometry on E and called the poset shelling of \mathcal{P} .

Example 2: poset shelling $\mathcal{P} = (E, \leq)$ a partially ordered set Define: $\mathcal{L} = \{ X \subseteq E : e \in X, f \leq e \Rightarrow f \in X \}.$ 1234 123 124 12 24 2

 ${\mathcal L}$ is a convex geometry on E and called the poset shelling of ${\mathcal P}.$

 ${\mathcal L}$ is a convex geometry on E and called the poset shelling of ${\mathcal P}.$

 ${\mathcal L}$ is a convex geometry on E and called the poset shelling of ${\mathcal P}.$

 $\sqrt{7}$

Example 2: poset shelling

 $\mathcal{P} = (E, \leq)$ a partially ordered set

Define: $\mathcal{L} = \{ X \subseteq E : e \in X, f \leq e \Rightarrow f \in X \}.$

 \mathcal{L} is a convex geometry on E and called the poset shelling of \mathcal{P} .

Example 2: poset shelling

 $\mathcal{P} = (E, \leq)$ a partially ordered set

Define: $\mathcal{L} = \{ X \subseteq E : e \in X, f \leq e \Rightarrow f \in X \}.$

 \mathcal{L} is a convex geometry on E and called the poset shelling of \mathcal{P} .

8

Example 3: tree shelling

T = (V, E) a tree

Define:

 $\mathcal{L} = \{ X \subseteq E : X \text{ forms a subtree of } T \}.$

 ${\cal L}$ is a convex geometry on E and called the tree shelling of T

What is "cupstacks"?

9

Construct the tower from the pile and get it back as quickly as possible.

Example 4: cupstacks

Example 4: cupstacks

A sequence in collapsing

9

Various objects yield convex geometries.

From graphs

10

- Tree shellings on vertices
- Graph search
- Simplicial elimination of chordal graphs
- From partially ordered sets
 - Poset double shellings
 - k-chains in partially ordered sets
- \blacklozenge From finite point sets in ${\rm I\!R}^{
 m d}$
 - Lower convex shellings on point sets
- From oriented matroids
 - Convex shellings of acyclic oriented matroids

Our Theorem (again)

Our Theorem:

Any convex geometry is isomorphic to some generalized convex shelling,

determined by two point sets P and Q satisfying that $\operatorname{conv}(P) \cap \operatorname{conv}(Q) = \emptyset$.

This gives an affine representation of a convex geometry.

Generalized convex shelling

P,Q finite point sets in \mathbb{IR}^d satisfying $\operatorname{conv}(P) \cap Q = \emptyset$ Define: $\mathcal{L} = \{X \subseteq Q : \operatorname{conv}(X \cup P) \cap (Q \setminus X) = \emptyset\}.$

Generalized convex shelling

P,Q finite point sets in \mathbb{R}^d satisfying $\operatorname{conv}(P) \cap Q = \emptyset$ Define: $\mathcal{L} = \{X \subseteq Q : \operatorname{conv}(X \cup P) \cap (Q \setminus X) = \emptyset\}.$

Generalized convex shelling

P,Q finite point sets in \mathbb{R}^d satisfying $\operatorname{conv}(P) \cap Q = \emptyset$ Define: $\mathcal{L} = \{X \subseteq Q : \operatorname{conv}(X \cup P) \cap (Q \setminus X) = \emptyset\}.$

Generalized convex shelling

P,Q finite point sets in \mathbb{R}^d satisfying $\operatorname{conv}(P) \cap Q = \emptyset$ Define: $\mathcal{L} = \{X \subseteq Q : \operatorname{conv}(X \cup P) \cap (Q \setminus X) = \emptyset\}.$

Generalized convex shelling

P,Q finite point sets in \mathbb{R}^d satisfying $\operatorname{conv}(P) \cap Q = \emptyset$ Define: $\mathcal{L} = \{X \subseteq Q : \operatorname{conv}(X \cup P) \cap (Q \setminus X) = \emptyset\}.$

Generalized convex shelling

P,Q finite point sets in \mathbb{R}^d satisfying $\operatorname{conv}(P) \cap Q = \emptyset$ Define: $\mathcal{L} = \{X \subseteq Q : \operatorname{conv}(X \cup P) \cap (Q \setminus X) = \emptyset\}.$

Generalized convex shelling

P,Q finite point sets in \mathbb{IR}^d satisfying $\operatorname{conv}(P) \cap Q = \emptyset$ Define: $\mathcal{L} = \{X \subseteq Q : \operatorname{conv}(X \cup P) \cap (Q \setminus X) = \emptyset\}.$

Any convex geometry is isomorphic to some generalized convex shelling.

In other words,

For any convex geometry \mathcal{L} , there exist finite point sets P and Q such that \mathcal{L} is isomorphic to the generalized convex shelling on Q w.r.t. P.

An illustration

 $\frac{14}{1}$

15/

For oriented matroids and matroids, we have

Topological representation theorems.

For convex geometries, we have

<u>Affine</u> representation theorem.

 \implies An intrinsic simplicity of convex geometries

```
17
```

Outline of the proof

The proof goes along the following line.

We are given a convex geometry \mathcal{L} .

(1) Construct: point sets P and Q from \mathcal{L} .

(2) Show:

 $\mathcal{L} \cong$ the generalized convex shelling on Q w.r.t. P.

Proof for a special case

To illustrate the proof, we will show a much weaker version.

What we will show

For any poset shelling \mathcal{L} there exist point sets P and Q such that \mathcal{L} is isomorphic to the generalized convex shelling on Q w.r.t. P.

Given a partially ordered set $\mathcal{P} = (E, \leq)$. Let n := |E|.

Construction of Q

We use the (n - 1)-dimensional space \mathbb{R}^{n-1} . For each $e \in E$, put a point q(e) such that $\{q(e) : e \in E\}$ is affinely independent, $(\operatorname{conv}(\{q(e) : e \in E\}) \text{ is an } (n - 1)\text{-simplex}).$

Let $Q = \{q(e) : e \in E\}$.

Given a partially ordered set $\mathcal{P} = (E, \leq)$. Let n := |E|.

Construction of P

For each $e_1, e_2 \in E$ such that $e_1 < e_2$,

Put a point $p(e_1, e_2)$ such that $q(e_1) = \frac{p(e_1, e_2) + q(e_2)}{2}$.

Let $P = \{p(e_1, e_2) : e_1, e_2 \in E, e_1 < e_2\}.$

Given a partially ordered set $\mathcal{P} = (E, \leq)$. Let n := |E|.

Construction of P

For each $e_1, e_2 \in E$ such that $e_1 < e_2$,

Put a point $\mathbf{p}(e_1, e_2)$ such that $\mathbf{q}(e_1) = \frac{\mathbf{p}(e_1, e_2) + \mathbf{q}(e_2)}{2}$.

Given a partially ordered set $\mathcal{P} = (E, \leq)$. Let n := |E|.

Construction of P

For each $e_1, e_2 \in E$ such that $e_1 < e_2$,

Put a point $\mathbf{p}(e_1, e_2)$ such that $\mathbf{q}(e_1) = \frac{\mathbf{p}(e_1, e_2) + \mathbf{q}(e_2)}{2}$.

Given a partially ordered set $\mathcal{P} = (E, \leq)$. Let n := |E|.

Construction of P

For each $e_1, e_2 \in E$ such that $e_1 < e_2$,

Put a point $p(e_1, e_2)$ such that $q(e_1) = \frac{p(e_1, e_2) + q(e_2)}{q(3)}$.

Outline of the proof

The proof goes along the following line.

We are given a convex geometry \mathcal{L} .

(1) Construct: point sets P and Q from *L*. DONE!

(2) Show:

 $\mathcal{L} \cong$ the generalized convex shelling on Q w.r.t. P.

 \cong the generalized convex shelling on Q w.r.t. P.

Proof sketch.

(1) When is $e \in E$ allowed to be removed?

22

 \cong the generalized convex shelling on Q w.r.t. P.

Proof sketch.

(2) When is $q(e) \in Q$ allowed to be removed?

 $\begin{array}{c} q(e) \text{ is allowed} \\ \text{to be removed} \end{array} & \stackrel{\text{all } q(f)\text{'s s.t. } p(e,f) \in P}{\text{have been already removed.}} \\ p(e,f) \\ \bullet - - \bullet - - \bullet \\ q(e) \qquad q(f) \end{array}$

"→" is straightforward from the construction. "←" needs some investigations.

(3)

 \cong the generalized convex shelling on Q w.r.t. P.

Proof sketch.

(1) When is $e \in E$ allowed to be removed?

$$\begin{array}{ccc} e \text{ is allowed} \\ \text{to be removed} \end{array} & \longleftrightarrow & \text{all f's such that } e < f \\ & \text{have been already removed} \end{array}$$

(2) When is $q(e) \in Q$ allowed to be removed?

$$\begin{array}{c} \mathbf{q}(e) \text{ is allowed} \\ \text{to be removed} \end{array} & \longleftrightarrow & \text{all } \mathbf{q}(f) \text{'s s.t.} \quad \mathbf{p}(e,f) \in \mathsf{P} \\ \text{have been already removed.} \\ \hline \mathbf{e} < \mathbf{f} \longleftrightarrow \quad \mathbf{p}(e,f) \in \mathsf{P} \end{array}. \end{array}$$

 \cong the generalized convex shelling on Q w.r.t. P.

Proof sketch.

(1) When is $e \in E$ allowed to be removed?

 $e \text{ is allowed} \longleftrightarrow$ all f's such that e < fto be removed \longleftrightarrow have been already removed.

(2) When is $q(e) \in Q$ allowed to be removed?

$$\begin{array}{c} \mathbf{q}(e) \text{ is allowed} \\ \text{to be removed} \end{array} & \longleftrightarrow \begin{array}{c} \text{all } \mathbf{q}(f) \text{'s s.t.} \quad \mathbf{p}(e,f) \in \mathsf{P} \\ \text{have been already removed.} \end{array}$$

$$\begin{array}{c} \text{Hence, the mapping} & "e \longmapsto \mathbf{q}(e)" \text{ is an isomorphism.} \end{array} \quad [qed] \end{array}$$

The final slide

What was our theorem??

Our Theorem

Any convex geometry is isomorphic to some generalized convex shelling.

This theorem is expected to be useful for a lot of problems in convex geometries.

Further Work How useful can it be?

[End of the talk]