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\/ Combinatorial abstract models of geometric concepts

¢ Matroids ................... abstraction of dependence

‘Finite geometry
Application: < Coding theory
 Combinatorial optimization

¢ Oriented Matroids ......... abstraction of dependence

r Convex polytopes
Computational geometry
Discrete geometry

L Optimization

Application:

¢ Convex geometries ........... abstraction of convexity

[ Discrete geometry
Application: < Social choice theory
Mathematical psychology




Y/ Representation theorems

¢ Matroids ................... abstraction of dependence

Every matroid can be represented
as a homotopy-sphere arrangement.

(Swartz, '02)

¢ Oriented Matroids ......... abstraction of dependence

Every oriented matroid can be represented
as a pseudohyperplane arrangement.
(Forkman—Lawrence, '78)

¢ Convex geometries ........... abstraction of convexity
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/ Answer

Our Theorem:

Any convex geometry Is isomorphic to
some generalized convex shelling,

determined by two point sets P and Q
satisfying that conv(P) Nconv(Q) = 0.

his gives an affine representation of a convex geometry.



v/ Contents

Our Theorem:

Any convex geometry iIs iIsomorphic to
some generalized convex shelling.

In the rest of my talk

& Definition of a convex geometry

¢ Examples of a convex geometry

& Definition of a generalized convex shelling
¢ Our theorem

¢ Outline of the proof



3/ Convex geometries

(Edelman—Jamison '85)

E a nonempty finite set
L a nonempty family of subsets of E

m L C 2% is called a convex geometry on E
if L satisfies the following three conditions.

(1) e L EeL
(2) X,Ye L= XNYeL
(3) Xe L\{E} = dec E\ Xs.t. XU{e} € L.



ﬁ/ Example 1: convex shelling
Q a finite point set in IR
Define: £L={XC Q :conv(X)N (Q\ X) = 0.
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L is a convex geometry and called the convex shelling on Q.
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{/ Example 2: poset shelling
P = (E, <) a partially ordered set
Define: L={XCE:ecX,f<e=fecX}]

1234
3 4
®
123 124
12 * 24
[
! 9 ] 2

L is a convex geometry on E and called the poset shelling of P.



{/ Example 2: poset shelling
P = (E, <) a partially ordered set
Define: L={XCE:ecX,f<e=fecX}]

1234
3 4
O
123 124
12 * 24
[
! 9 ] 2

L is a convex geometry on E and called the poset shelling of P.



{/ Example 2: poset shelling
P = (E, <) a partially ordered set
Define: L={XCE:ecX,f<e=fecX}]

1234
3
123 124
12 ? 24
o
] 9 | 2

L is a convex geometry on E and called the poset shelling of P.



{/ Example 2: poset shelling
P = (E, <) a partially ordered set
Define: L={XCE:ecX,f<e=fecX}]

1234
123 124
12 ? 24
O O
] 9 | 2

L is a convex geometry on E and called the poset shelling of P.



{/ Example 2: poset shelling
P = (E, <) a partially ordered set
Define: L={XCE:ecX,f<e=fecX}]

1234
123 124
12 ? 24
O
] | 2

L is a convex geometry on E and called the poset shelling of P.



{/ Example 2: poset shelling
P = (E, <) a partially ordered set
Define: L={XCE:ecX,f<e=fecX}]

1234
123 124
12 ? 24
| 2

L is a convex geometry on E and called the poset shelling of P.



{/ Example 2: poset shelling
P = (E, <) a partially ordered set
Define: L={XCE:ecX,f<e=fecX}]

1234
3 4
®
123 124
12 * 24
[
! 9 ] 2

L is a convex geometry on E and called the poset shelling of P.



Y/ Example 3: tree shelling
T=(V,E) a tree
Define:

L ={X CE:X forms a subtree of T}.

1234

L is a convex geometry on E and called the tree shelling of T
8



Y/ Example 4: cupstacks
What is “cupstacks”?

Construct the tower from the pile and get it back
as quickly as possible.
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Y/ Example 4: cupstacks

A sequence in collapsing

H

ﬁa B
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Y/ Other examples

Various objects yield convex geometries.

¢ From graphs

@ Tree shellings on vertices
@ Graph search
@ Simplicial elimination of chordal graphs

& From partially ordered sets

® Poset double shellings
® k-chains in partially ordered sets

¢ From finite point sets in R
® Lower convex shellings on point sets
¢ From oriented matroids
@ Convex shellings of acyclic oriented matroids

¢ ..

10



"/ Our Theorem (again)

Our Theorem:

Any convex geometry Is isomorphic to
some generalized convex shelling,

determined by two point sets P and Q
satisfying that conv(P) Nconv(Q) = 0.

his gives an affine representation of a convex geometry.
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'Y/ Generalized convex shelling
P.Q finite point sets in IR¢ satisfying conv(P) N Q =
Define: £L={XC Q :conv(XUP)N(Q\ X) = 0}.

1234
A : |
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2 3 4 1 4
y

L is a convex geometry on Q and called
the generalized convex shelling on QQ with respect to P.
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'Y/ Generalized convex shelling

P.Q finite point sets in IR¢ satisfying conv(P) N Q = ()
Define: L={XC Q:conv(XUP)N (Q\X) =0}

A
S 134
// \\ /’ 14
S--o--o-4
2 3 4 1

T

L is a convex geometry on Q and called

1234

234
34

the generalized convex shelling on Q with respect to P.
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'Y/ Generalized convex shelling
P.Q finite point sets in IR¢ satisfying conv(P) N Q =
Define: £L={XC Q :conv(XUP)N(Q\ X) = 0}.
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y

L is a convex geometry on Q and called
the generalized convex shelling on QQ with respect to P.
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'Y/ Generalized convex shelling
P.Q finite point sets in IR¢ satisfying conv(P) N Q =
Define: £L={XC Q :conv(XUP)N(Q\ X) = 0}.
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'Y/ Generalized convex shelling
P.Q finite point sets in IR¢ satisfying conv(P) N Q =
Define: £L={XC Q :conv(XUP)N(Q\ X) = 0}.
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L is a convex geometry on Q and called
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'Y/ Generalized convex shelling
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3/ Our theorem (again)

Any convex geometry iIs isomorphic to

some generalized convex shelling.
In other words,

For any convex geometry L,
there exist finite point sets P and Q such that
L is isomorphic to

the generalized convex shelling on Q w.r.t. P.
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An illustration
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Y/

What does the theorem mean? (1)

— Convex geometries
p Tree shellings \
— Poset shellings —
4 R
. y,
. Y,
\- Convex shellings —/
g
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13/ What does the theorem mean? (1)

Convex geometries = Generalized convex shellings

—
p Tree shellings \
—t Poset shellings —
4 )
g ,
g _/
\- Convex shellings —/
g J/
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15/ What does the theorem mean? (2)

¢ For oriented matroids and matroids, we have

Topological representation theorems.

& For convex geometries, we have

Affine representation theorem.

—> An intrinsic simplicity of convex geometries

16



Y/ Outline of the proof

The proof goes along the following line.

We are given a convex geometry L.

(1) Construct:
point sets P and Q from L.

(2) Show:

L = the generalized convex shelling on Q w.r.t. P.

17



1%/ Proof for a special case

To illustrate the proof, we will show a much weaker version.

What we will show

For any poset shelling L

there exist point sets P and Q such that

L is isomorphic to

the generalized convex shelling on Q w.r.t. P.

18



Y/ Construction of a point set Q
Given a partially ordered set P = (E, <). Let n:=|E|.

Construction of Q

We use the (n — 1)-dimensional space R

For each e € E, put a point ((e) such that
{q(e) : e € E} is affinely independent,
(conv({q(e) :e € E}) is an (n — 1)-simplex).

Let Q ={q(e): e El.
19



Zg/ Construction of a point set P

Given a partially ordered set P = (E, <). Let n:=|E|.

Construction of P

For each e, e> € E such that e; < ey,

pler,ez) +Cl(€z)_

Put a point p(ey,ez) such that q(e;) = 5

p(e1 y eZ)

- — — — @ —— — 9

q(eq) q(ez)
Let P ={p(e1,e2):e1,e2 € E,e; < ezl

20



23/ Construction of a point set P

Given a partially ordered set P = (E, <). Let n:=|E|.

Construction of P

For each e, e> € E such that e; < ey,
pler,ez) + gley)

Put a point p(€1,€2) such that CI(€1) —

2
3 q(3)
(1)
A | / q(2)
] 2 ‘/ \
\
p(2,3)
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23/ Construction of a point set P

Given a partially ordered set P = (E, <). Let n:=|E|.

Construction of P

For each e, e> € E such that e; < ey,
pler,ez) + gley)

Put a point p(€1,€2) such that CI(€1) —
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3 /
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A/ Outline of the proof

The proof goes along the following line.

We are given a convex geometry L.

(1) Construct:
point sets P and Q from L. ...................

(2) Show:

L = the generalized convex shelling on Q w.r.t. P.
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2%/ The final claim

the poset shelling of P = (E, <)

= the generalized convex shelling on Q w.r.t. P.
Proof sketch.

(1) When is e € E allowed to be removed?

e is allowed all f's such that e < f
to be removed have been already removed.
1 )
®
o
e
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2{/ The final claim

the poset shelling of P = (E, <)

= the generalized convex shelling on Q w.r.t. P.
Proof sketch.

(2) When is d(e) € Q allowed to be removed?

d(e) is allowed — all q(f)'ss.t. p(e,f) € P
to be removed have been already removed.

ple,f)

q(e) q(f)

"=—" Is straightforward from the construction.
“&=" needs some investigations.
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3/ The final claim

the poset shelling of P = (E, <)

= the generalized convex shelling on Q w.r.t. P.

Proof sketch.

(1) When is e € E allowed to be removed?

e |sballowed ; - all f's such that
to be remove have been already removed.

(2) When is q(e) € Q allowed to be removed?

q(e) is allowed — all g(f)'ss.t.|p(e,f) €P
to be removed have been already removed.

(3) e < f|&— ) € Pl

22



2{/ The final claim

the poset shelling of P = (E, <)

= the generalized convex shelling on Q w.r.t. P.

Proof sketch.

(1) When is e € E allowed to be removed?

e is allowed — all f's such that ‘ e < f\

to be removed have been already removed.

(2) When is d(e) € Q allowed to be removed?

q(e) is allowed — all g(f)'ss.t. | p(e,f) €P

to be removed have been already removed.
Hence, the mapping “e — q(e)” is an isomorphism. [ged]
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3/ The final slide

What was our theorem??

Any convex geometry iIs iIsomorphic to

some generalized convex shelling.

This theorem is expected to be useful
for a lot of problems in convex geometries.

Further Work | How useful can it be?

[End of the talk]
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