Matroid Representation of Clique Complexes

Kenji Kashiwabara Yoshio Okamoto* Takeaki Uno (Univ Tokyo) (ETH Zurich) (NII Japan)

July 25–28, 2003 COCOON 2003 @ Big Sky Resort, MT

* Supported by the Berlin-Zürich
 Joint Graduate Program

Combinatorics Geometry Computation

Authors

Y. Okamoto ETH Switzerland

T. Uno NII Japan

Background

- An independence system can be represented as the intersection of finitely many matroids.
- The clique complex of a graph is an independence system.

Question

How many matroids do we need for clique complexes?

Motivation Given later.

 $\sqrt[3]{}$

\boldsymbol{V} a nonempty finite set

Def.: an independence system on V is a nonempty family \mathcal{I} of subsets of V s.t. $X \in \mathcal{I} \implies Y \in \mathcal{I}$ for all $Y \subseteq X$. Example: $V = \{1, 2, 3, 4\};$

 $\{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}, \{1, 2, 3\}\}$

 $\sqrt[3]{}$

\boldsymbol{V} a nonempty finite set

Def.: an independence system on V is a nonempty family \mathcal{I} of subsets of V s.t. $X \in \mathcal{I} \implies Y \in \mathcal{I}$ for all $Y \subseteq X$. Example: $V = \{1, 2, 3, 4\};$ $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}, \{1, 2, 3\}\}.$

\boldsymbol{V} a nonempty finite set

Def.:an independence system on V is
a nonempty family \mathcal{I} of subsets of V s.t. $X \in \mathcal{I} \implies Y \in \mathcal{I}$ for all $Y \subseteq X$.

also called an abstract simplicial complex.

Typical independence systems from ...

From graphs

- the family of the cliques
- the family of the forests
- the family of the matchings
- From partially ordered sets
 - the family of all chains
- From polytopes
 - the family of all faces of a simplicial polytope
- From game theory
 - the family of losing coalitions of a weighted majority game

 $\frac{\sqrt[5]{Understanding independence systems}}{\mathcal{I} = \{\emptyset, 1, 2, 3, 4, 12, 13, 23, 34, 123\}.}$ 1234 V

(known as the face poset of \mathcal{I} , when we see \mathcal{I} as an abstract simplicial complex)

Def.: matroids

Def.: An indep. system \mathcal{I} is called a matroid

if \mathcal{I} satisfies the augmentation axiom:

 $X, Y \in \mathcal{I}, |X| > |Y| \Longrightarrow \exists z \in X \setminus Y \text{ s.t. } Y \cup \{z\} \in \mathcal{I}.$

Appearance of matroids:

6

Combinatorial optimization, Combinatorial geometry, Combinatorial topology, Coding theory, Design theory, etc.

 $\sqrt{7}$

Intersection of independence systems

The intersection of indep. systems $\mathcal{I}_1,\,\mathcal{I}_2$ on V is

 $\mathcal{I}_1\cap \mathcal{I}_2=\{X\subseteq V: X\in \mathcal{I}_1 \text{ and } X\in \mathcal{I}_2\}.$

The intersection of more indep. systems is defined analogously.

Intersection of independence systems

The intersection of indep. systems $\mathcal{I}_1,\,\mathcal{I}_2$ on V is

 $\mathcal{I}_1\cap \mathcal{I}_2=\{X\subseteq V: X\in \mathcal{I}_1 \text{ and } X\in \mathcal{I}_2\}.$

- The intersection of more indep. systems is defined analogously.
- The intersection of indep. systems is again an indep. system.

Intersection of independence systems

The intersection of indep. systems $\mathcal{I}_1,\,\mathcal{I}_2$ on V is

 $\mathcal{I}_1 \cap \mathcal{I}_2 = \{ X \subseteq V : X \in \mathcal{I}_1 \text{ and } X \in \mathcal{I}_2 \}.$

- The intersection of more indep. systems is defined analogously.
- The intersection of indep. systems is again an indep. system.
- The intersection of matroids is an indep. system but not necessarily a matroid. However ...

An important fact

8

Question:

How many matroids do we need to represent a given indep. system as their intersection??

The proof in the prev. page says that: this number ≤ the number of • for I. But, we might do better.
★ We study this number for clique complexes.

Question (again)

Question:

How many matroids do we need to represent a clique complex as their intersection??

Result:

We investigate and characterize these numbers.

Question (again)

Question:

How many matroids do we need to represent a clique complex as their intersection??

Result:

We investigate and characterize these numbers.

However, you may ask...

(1) Why do we consider such a representation??(2) Why do we consider clique complexes??

12 **Motivation** Why do we consider such a representation? Ans. in the following proposition. Prop.: (Jenkyns, '76; Korte–Hausmann, '78) (Translation of their prop. to clique complexes) cliq(G) is the intersection of k matroids \implies Greedy Alg. is a k-approx. alg. for Max weighted clique problem in G. $\star k \approx$ how complex G is w.r.t. clique problem.

Why do we consider clique complexes?

- Ans. The class of clique complexes includes some important classes like the classes of
 - \blacklozenge the family of the matchings of a graph G = cliq(the complement of the line graph of G) studied by Fekete–Firla–Spille '03 in the same framework as ours.
 - the family of the chains of a poset P = cliq(the comparability graph of P)

13

 $\frac{14}{\sqrt{}}$

The talk plan

In the rest of my talk

- (1) clique complex which is a matroid
 - Key concept: partition matroid
- (2) clique complex
 - which is the intersection of k matroids
 - Key concept: stable-set partition
- (3) other results

15/

Def.: Partition matroid

V a nonempty finite set $\mathcal{P} = \{V_1, V_2, \ldots, V_r\}$ a partition of V

Def.: A partition matroid $\mathcal{I}(\mathcal{P})$ of \mathcal{P} is

$\mathcal{I}(\mathcal{P}) = \{ X \subseteq V : |X \cap V_i| \le 1 \text{ for all } i = 1, \dots, r \}.$

 $\mathcal{I}(\mathcal{P}) = \{146, 147, 148, 156, 157, 158, 246, 247, 248, 256, 257, 258, 346, 347, 348, 356, 357, 358, and their subsets\}$

Def.: Partition matroid

V a nonempty finite set $\mathcal{P} = \{V_1, V_2, \ldots, V_r\}$ a partition of V

Def.: A partition matroid $\mathcal{I}(\mathcal{P})$ of \mathcal{P} is

$\mathcal{I}(\mathcal{P}) = \{ X \subseteq V : |X \cap V_i| \le 1 \text{ for all } i = 1, \dots, r \}.$

Construct a complete r-partite graph $G_{\mathcal{P}}$ s.t. each part of $G_{\mathcal{P}}$ corresponds to V_i .

Then, $\operatorname{cliq}(G_{\mathcal{P}}) = \mathcal{I}(\mathcal{P})$.

[qed]

Remark: G a graph G is complete multipartite ↓ cliq(G) is a matroid.

17

Thm 1: G a graph G is complete multipartite \updownarrow cliq(G) is a matroid.

Omitted.

The talk plan

In the rest of my talk

 clique complex which is a matroid
 Key concept: partition matroid
 clique complex which is the intersection of k matroids
 Key concept: stable-set partition
 other results

Def.: Stable-set partitions

G = (V, E) a graph

Def.: A stable-set partition of G

is a partition $\mathcal{P} = \{V_1, \ldots, V_r\}$ of V s.t. V_i is a stable set of G $(i = 1, \ldots, r)$.

Example:

Construct a graph from a stable-set partition

- G a graph \mathcal{P} a stable-set partition of G
- Construct a complete r-partite graph $G_{\mathcal{P}}$ from \mathcal{P} .

Observation: An edge of G is an edge of $G_{\mathcal{P}}$.

<u>This means</u>: $\operatorname{cliq}(G) \subseteq \operatorname{cliq}(G_{\mathcal{P}}) = \mathcal{I}(\mathcal{P}).$

 $\frac{22}{\sqrt{}}$

Generally, $\mathsf{cliq}(G) \subseteq \mathsf{cliq}(G_{\mathcal{P}_1}) \cap \mathsf{cliq}(G_{\mathcal{P}_2}) \cap \mathsf{cliq}(G_{\mathcal{P}_3}).$

However, in this example,

That is because

 $\frac{22}{\sqrt{}}$

Generally, $\mathsf{cliq}(G) \subseteq \mathsf{cliq}(G_{\mathcal{P}_1}) \cap \mathsf{cliq}(G_{\mathcal{P}_2}) \cap \mathsf{cliq}(G_{\mathcal{P}_3}).$

However, in this example,

G = (V, E) a graph

23

$\begin{aligned} \mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_k \text{ stable-set partitions of } G\\ & \text{cliq}(G) = \bigcap \{\mathcal{I}(\mathcal{P}_i) : i = 1, \dots, k\} \\ & \texttt{\ramega}\\ & \texttt{No red edge is contained in all } G_{\mathcal{P}_i} \text{ 's.} \end{aligned}$

 $\sqrt[24]{}$ In other words. Remark: G = (V, E) a graph

 $\exists \ k \ stable-set \ partitions \ \mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_k \ of \ G \ s.t. \\ cliq(G) = \bigcap \{ \mathcal{I}(\mathcal{P}_i) : i = 1, \dots, k \}$

 $\exists k \text{ stable-set partitions } \mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_k \text{ of } G \text{ s.t.}$ no red edge is contained in all $G_{\mathcal{P}_i}$'s.

25Moreover G = (V, E) a graph Thm 2: cliq(G) is the intersection of k matroids $\exists k \text{ stable-set partitions } \mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_k \text{ of } G \text{ s.t.}$ $cliq(G) = \bigcap \{ \mathcal{I}(\mathcal{P}_i) : i = 1, \dots, k \}$ $\exists k \text{ stable-set partitions } \mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_k \text{ of } G \text{ s.t.}$ no red edge is contained in all $G_{\mathcal{P}_i}$'s.

Proof. Omitted.

Given a graph G.

Matroids

When we want a representation of cliq(G) by k matroids, just search k partition matroids from stable-set partitions of G.

 $\sqrt{\frac{27}{\sqrt{}}}$

Consider the following decision problem.

Instance:a graph G and a positive integer kQuestion:?? $\exists k \text{ matroids } \mathcal{I}_1, \ldots, \mathcal{I}_k$ s.t. $cliq(G) = \mathcal{I}_1 \cap \cdots \cap \mathcal{I}_k$??

Thm 2 implies: This problem $\in \mathcal{NP}$.

 $\frac{28}{\sqrt{}}$

The talk plan

In the rest of my talk

(1) clique complex which is a matroid Key concept: partition matroid (2) clique complex which is the intersection of k matroids Key concept: stable-set partition (3) other results (five more pages!!!)

² Clique complexes represented by two matroids
Thm 3: G a graph
cliq(G) is the intersection of two matroids
The stable-set graph of G is bipartite.

Clique complexes represented by two matroids Thm 3: G a graph cliq(G) is the intersection of two matroids The stable-set graph of G is bipartite. Note: Combining { Theorem 3 and Protti–Szwarcfiter ('02), we can tell, in polynomial time, whether the clique complex of a given graph is the intersection of two matroids or not.

 $\frac{30}{1}$

Complexity issue

Consider the following decision problem.

Fix: a positive integer k Instance: a graph G Question: ? \exists k matroids $\mathcal{I}_1, \ldots, \mathcal{I}_k$ s.t. $cliq(G) = \mathcal{I}_1 \cap \cdots \cap \mathcal{I}_k$?

What is the complexity of this problem for each k?

Graphs as independence systems

A graph can be seen as an independence system:

$$X \in G \quad \Leftrightarrow \quad X = \begin{cases} \emptyset & \text{or} \\ \{\nu\} & \text{or} \\ \{u,\nu\} & \text{if it's an edge.} \end{cases}$$

31

h

G is the intersection of k matroids

cliq(G) is the intersection of k matroids.

$$\frac{32}{\sqrt{}}$$

Let $k(G) = \min\{k : cliq(G) \text{ is the intersection of } k \text{ matroids } \}.$ $k(n) = \max\{k(G) : G \text{ has } n \text{ vertices } \}.$

Thm 5:
$$k(n) = n - 1$$
.

Question

How many matroids do we need to represent a given clique complex as their intersection??

Result

cliq(G) is the intersection of k matroids
 cliq(G) is the intersection of k partition matroids from stable-set partitions of G

[End of the talk]